
Art. I.

—

On Practical Geodesy.

By Martin Gardiner, C.E.

[Read 11th May, 1876.]

The method of investigation employed in this paper is of

a purely elementary character, and in this respect it differs

from that usnally adopted by the most distinguished

geometers who have written on the subject. The method
introduced by Legend re, Delambre, and Puissant, and which
has been followed by Airy and others, is characterised

chiefly by the subsidiary use of the higher calculus and
interminable series.

The elementary method here pursued leads to simpler

and more comprehensive formulse, and at the same time
aflfords a clearer insight into the various relations between
latitudes, azimuths, differences of longitude, length and
circular measure of geodesic arc, angles of depression of the

chord, &c. Its power of improving and extending the

science in one of its most useful directions can be judged
of from the numerous new results arrived at, and a com-
parison between them and those hitherto evolved by means
of the higher calculus.

The errors which have been shewn to exist in some of

the investigations and formulae given in the "account"
of the principal triangulation of Great Britain and Ireland,

will no doubt attract the attention of Engineers and
Surveyors engaged on trigonometrical surveys in India

and elsewhere.

Let P^ be the pole of reference of the spheroidal earth

;

„ Cq be the centre of the earth
;

„ S^, S^^, be any two stations on the earth's surface

;

„ Z^, Z^^, be the points in which the normals at the
respective stations S^, S^^, cut the earth's polar axis.

The planes S^Z^S^^, S^^Z^^S^, are "the normal-chordal
planes." And any plane whatever which contains the chord
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2 On Practical Geodesy.

of the geodesic arc S S shall be referred to as a chordalO O 00

plane.

The polar and equatorial radii of the earth being 20855233,
and 20926348 feet, it is easy to show that for arcs on its

surface not more than 528000 feet or 100 miles in length,

we may consider the traces of the two normal-chordal
planes as equals in length and circular measure to that of

the " true geodesic " or shortest arc between the stations.

Conceive two unit spheres described, having S^, S^^, as

centres. Let C^, S^, I, P, be the points in which the sphere

S^ is pierced by the productions of the lines C^S^, Z^S^, S^^S^,

through the centre S^, and by the line S^P parallel to and in,

the same direction as the polar axis C^P^.

Let C^^, S^^, I^^, P^^, be the points in which the sphere S^^ is

pierced by the productions of the lines C^S^^, Z^^S^^, by the

chord S^S^^ taken in the direction S^^S^, and by the line

^oo^// parallel to and in the same direction as the polar

radius C P .
O O

Then evidently the points P, C, S^, are in the trace, on the

unit sphere S^, of the earth's meridian plane through S^ ; and
P^^, C^^, S^^, are in the trace, on the unit sphere S^^, of the

earth's meridian plane through the station S^^.

The arc P^^I^^ is equal to the arc PI, each of them being

the measure of the angle which the chord joining the sta-

tions makes with the earth's polar axis.

The angle P,,S^J^^ is the azimuth of the station S^ as

observed at the station S^^ ; and the angle PSJ is the sup-

plement of the azimuth of the station S^^ as observed at

the station S^. The arcs PS^, P,,S^,, are the geographic

colatitudes of the stations S S ,—such as can be measured
o oo'

directly by means of the Zenith Sector.

The arcs PC^, PC^, are the geocentric colatitudes of the

stations.

Now conceive the unit sphere S^^ moved by direct trans-

lation along the chord, carrying its lines and points rigidly

fixed, until its centre coincides with the centre S^ of the unit

sphere S^. It is evident that the points I^^, P^^, will coincide

with I, P, and that the points I, C , C^^, lie in one great circle

of the sphere S^. It is also evident that the points P^, S^^, C^^,

lie in one great circle of the unit sphere S^, and that the

spherical angle S^PS^^ or C PC^^ is equivalent to the difference

of longitude of the stations SoSoo-
Let p^, p^^, be the points in which the lines PS^, P^.S^o,

parallel to the polar axis, pierce the earth's equator. Then



On Practical Geodesy. 3

it is evident that the plane angle p^C^p^^ is equivalent to the
difference of longitude of the stations.

It is also evident that the plane angles C^p/p^^, O^'pjp^, are

equals respectively to the spherical angle S^PI, and the sup-
plement of the spherical angle S^^PI.

Let D^, D^^, be the points in which the great circles IS^^,

IS^, cut the great circles PS^C^, PS/zC',,, respectively. It is

evident the arc S^S^^ is the measure of the angle which the
normals make with each other.

The arc SD„ is the measure of the plane angle SoZ„S„„ ;

the arc S^^D^ is the measure of the plane angle S^^Z^^S^; the

arcs S^C^, ^yf^.p ^^^ ^he measures of " the angles of the
vertical" at the stations SoS^^ ; the spherical angle SJS^^ is

equal to the angle between the two normal-chordal planes.

And if 0, E^, E^^, be the points in which the great circle

of the unit sphere having I as pole cuts the arcs S^S^^, ^J^„,
S^^D^, respectively ; it is evident that the arcs S^E^, S^^E,^ are

the measures of the angles of depression of the geodesic

chord SoSoo below the tangent planes to the spheroidal

earth at the respective stations SoSo^; and they are the
complements of the angles which the normals make with
the chord.

The spherical angles S^^S^D^^, ^^S^/I^^, are equivalents to the

angles which any plane parallel to the two normals makes
with the two normal-chordal planes.

And the spherical angles ^J)J)^, S^D^^D^, are equivalents

to the angles which any plane parallel to the two lines

SqZoo, SooZq, makes with the normal-chordal planes.

The interpretation of the other points, lines, angles, and
planes of the figure can present no difficulty, and no further

elucidation is necessary here ; but in order to avoid miscon-
ceptions, it should be remembered that all through this

paper (when two stations only are considered) we will

consider the latitude of the station So greater or not less

than the latitude of the station Soo, —as indicated in the
figure.

NOTATION.

Z^, 1^1 denote the latitudes of the stations S^, S^^j respectively.

V, I" „ colatitudes, or the arcs PS„ PS,; „
L', L" ., arcs PD,, PD,.

azimuths or angles PS,D,„ PS„D,.A,, A,
A,, A, angles PS^S,, PS,S,, of the triangle S,PS,

„ PD,S,,, PD,S,.
arcs S,D,, S,D,.
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a,, a„ denote the angles of depression of the chord, or arcs S,E^,

8„ 8„ „ the small arcs S,D„ S,,D„.

".
R.

s, k

V

6

A
a

b
e

S.S.Dangles S,,S^D^

normals S^Z^, S^qZ^^, terminating in polar

axis,

lines S,Z,„ S,,Z,,.

angles IPS^ and supplement of IPS,^.

lengths of geodesic arc and chord respectively,

denotes the arc S^S,,, or the angle between the normals,

circular measure of the geodesic arc s.

arc PI, or angle between the chord and polar

axis,

angle SJS,, between the normal-chordal planes,

length of the earth's equatorial radius.

„ „ „ polar radius,

earth's eccentricity.

1. Values of geodetic constants, in accordance with the

dimensions of the earth as finally adopted by the Ordnance
D.epartment of Great Britain and Ireland.

log. a = 7-3206934433

log. b = 7-3192150463

log. e = 2"-9157795987

log. e' - 3^8315591974

log. (l~e') = r997043J059

log. (j^) = 0029567941

log. Lf-\ -"3 8345159915

The geodetic tables above referred to give also the

logs, to 8 places of decimals of the normals terminating in

the polar axis for all latitudes from the equator to the pole.

The well-known formula by means of which any of these

normals is expressed in terms of the latitude to which it

pertains is

—

R _ ^

Jl—e'^ sin2 I

2. The following relations are evident from the figure

—

C^p, = 'R^ cos l^; C^p,,=^'R^^ cos l,^ (i)

S,p, = Y^, (l—e') sin l^ ; S„,;?9,, = R, (I— e'O
sin Z, (2)

a = 20926348 feet

b = 20855233 feet

e = -0823719976978

e' = -0067851460047

(1—e2) = -9932148539953

(-^)= 1-0068314987210

(-^) = -0068314987230
\1 <?2/

CAo= R. 6^«inZ,, (.)

(CoP.)^+(So^. + C,Z,J^ = Il^ - 2R, 6^ sin^ l^ + ¥ (4)

= (CoPj + (Soo^. + CoZ,)^=R^- 2R, e' sin^ Z,-f F (.)

C,Z„::=R, e^sinZ,
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in which F is the same function of the latitudes in the

equation (4) and (5).

SoP, —SooP. = (R. sin I, —U, sin IJ . (1—e^) (e)

C,Z, —C,Z,, = (R, sin I, —R,^ sin ^J . e' (,)

SoP.-S,,/).. : Z,Z,, :: (1-6^): e^ (s)

3. From the expressions for the magnitudes of Q„ Q,„ we
have

R; + Q; = 2-Ii; (1 _ e2 sin%) + F = 2a2 + F;

R^/ + Q^/ = 2-R,;(l —e^sin^/,) + F = Sa^ + F.

And therefore it is obvious that we have the relation

—

R/ + q; = R^/ + Q^; (,)

Hence it follows that if N be the middle point of the

segment Z^Z^^ of the polar axis intercepted by the normals,

we have

—

And from this it is obvious that the stations So, S^^, are in

the surface of a sphere whose centre is N, and that we have

^. -y Q. (-)

(See formulae 81 'A and 81'B in the sequel.)

4. If in each of the triangles Z^Z^^^S^, Z„Z^ ^S^o, we
express the base Z^Z..^ in terms of the other two sides and
the included angle, it is evident from (9) that

—

R^ • Q, • cos S^ = R,, • Q,^ • cos 8,^ (12)

. cos S, _ R,, • Q,,

cos "8,,
~ R, • Q^

.•• ^.-Q. 7 R, -Q, (13)

absolutely; but in all ordinary cases they are equals to at

least 10 places of decimals in their logarithms.

5. It is evident that the plane through the middle point

N, of the segment Z^Z^^, perpendicular to the geodesic chord

S^S^o, must bisect this chord or pass .through its middle
point M. And therefore, since the portions NZ^, NZ„„, of

Z^Z^o, which Lie on opposite sides of this plane are equals, it

follows that the planes through Z^, Z^^, perpendicular to the

geodesic chord S^S^o, cut it in points T^, T^^^ equidistant

from its middle point M. Hence

—

sin a, = cos T,S,Z, = S,T,
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.
sin «/ _ I^//

/^ \

sin a,^ R^

And since we suppose I, greater than l,„ we know that R,
is greater than R,, ; and hence we learn that the angle of

depression a,^ adjacent to the station having the lesser

latitude is greater than the angle of depression a, adjacent

to the station having the greater latitude.

6. Wehave, evidently

—

or, which is the same

—

tan a, tan a,,

tan (z, —a,) tan {z,^ —a,)
(.a)

Now it is evident that each side of this equation is greater

than unity; and .'. when z, and z,, are each less than a

quadrant, we have

—

a, 1 z, —a, / X

«// 7 Z,, —a,, ^ ^

7. If the latitudes l„ l,„ of any two stations (on the same
side of the earth's equator) be of constant magnitudes, then,

no matter how otherwise the stations may vary in position,

it is evident that the points Z^, Z^^, in which the normals
cut the polar axis, remain fixed. It is also evident that as

regards the magnitudes of L', L", 8^, 8,,, they too are con-

stants, and the same as if the stations were on one meridian.

Hence it is obvious that when l^ is greater than l^^, or, which
is the same—when I" is greater than l\ we know that the

first and third of the following are true

—

I" - L"
L" 7 L' (17)

L' 7 I'

The truth of the second of these relations is easily seen.

For drawing perpendiculars S^H^, S^^H^^, from the stations

to the polar axis, it is evident we have

—

tanL" = S,,H,, ^ (Z,,H,, + Z,,Z,)
tanL' = S,H, - (Z,,H,, + H,,HJ;

and therefore since S^^H^^ 7 S„H^, and that Z„„Z„ l H^^H^,

tan L" 7 tan L'

L" 7 L'
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Hence also (since each of the four arcs is less than 90°) we
have

sin I" 7 sin L"
sin L" V sin L' (i s)

sin L' 7 sin I'

8. From the spherical triangles D.PS,,, D,,PS,, we have

—

sin L' sin D, = sin I" sin A,,

sin L" sin D,, = sin I' sin A,

sin D, 7 sin A,, , x

sin A, 7 sin D,,
^^^'

And since each of the angles (D, + A,,), (A, + D^J, is less

than 180°, it foUows that—
D^ 7 A^^, and that A^^ is acute / x

A, 7 D,, and that D,^ is acute *
'^''^

9. Weshall now establish the following important rela-

tions between the azimuths and angles D,, D,, —
D, 7 A,
A, 7 A„ (21)
A, 7 D,

First, from the triangles S^PD,,, S,,PD,, we have

—

sin 2, sin A, = sin L" sin w
sin 0,^ sin A,, = sin L' sin 00

But from (14), (15), and (16), it is evident that

—

z,, 7 z, (22)

And therefore, since sin L" is greater than sin L' we have

—

sin z, sin A, 7 sin z^^ sin A,,

sin A, _ ,

sin A,,

Now, since A, + A,, is less than 180°, and that angle A,, is

acute (see 20), therefore it foUows that

—

A, 7 A^^

In order to shew that the first and third of the relations

(21) a,re true, we may proceed thus

—

Applying formula 4, page 158, of Serret's Trigonometry
to the spherical triangle SJS,,, and putting c to represent the

spherical excess of this triangle, we have

—

sin 1 (a, —a,,)

tan i (a —c) = • tan J a (23)

cos i (a, + a,,)
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And, since a^—a^^ is negative, it follows A is less tlian e;

Hence also

—

angle IS,S, + angle IS,,S, i 180°

angle S,S,D, t angle S,,S,D,,

or, Q„ 7 O, (24)

Wehave also

—

A, + A, = PS,S, + PS,S, + (€ —A)
&.-. A, + A, 7 A, + A,, (.5)

Now the triangle SJD, is evidently such that

—

angle IS,D, + angle ID,S, ^ 180°

but, angle PD,S,, + angle ID^S, = 180°

.-., angle PD,S,, 7 angle IS,D,
or, 1), 7 A,

And the triangle S,,ID,, is evidently such that

—

angle IS,,D,, + angle ID,S,, 7 180
but, angle PD,,S, + angle ID,S,, = 180

angle IS,D, 7 angle PD,S,
or, A,, 7 D,,

10. From equation (14) or, ~ ' = ^, we have

—

^ ^ ^ sm a,, E,

'

sin a„ —sin a, R, —K„
sin a^i + sin a^ K, + ^,1

tan J (a,, —a,) _ P-, —̂ „
(-)

tan J (a,, —a,) = ' " tan J 5 (27)

From this equation it is evident that when the latitudes are

of constant mao^nitudes, then the oreater the circular

measure % of the intervening geodesic arc is, the greater

will be the difference of the angles of depression of the

chord. But although a^^—a^ increases or decreases according

as ^ increases or decreases, it is nevertheless evident, from

(14), that both a^^ and a^ increase or decrease as a^^ + a^ or

^ increases or decreases.

Moreover, it is evident that when the latitudes are con-

stants

—

cos a, . ^ . / x
increases as 5 increases (28)

cos a

tan — decreases as 2 increases (29)
tan a,.

However, it is proper to observe that even for a geodesic
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arc on the earth's spheroidal surface whose circular measure

is a.s great as 1°^^ 30', and the latitudes of whose extremities

differ by as much as 1°, we may, with due respect to the

utmost attainable precision in geodetic surveying in Vic-

toria, assume

—

cos a, T / \
'- = 1 (so)

COS a,,

For by means of (27) it can be easily shown that even in

this extreme case a^^ —a^ is less than a sixth part of a

second, and that the logarithms of cos a^ and cos a^^ will be

the same to 8 places of decimals, and differ in the ninth

place by less than 4. Hence also, in the actual practice of

trigonometrical surveying, we may, for some purposes,

assume

—

a,, _ tan a,, _ sin a^, _ E,^ / \

a^ tan a^ sin a, R^^

their logs, being the same to at least 8 places of decimals.

Formulae 27 and 82 will be found very useful in the com-
putation of the angles of depression of the chord of the

geodesic arc; but, when worked by means of logarithms,

the best way is to find, in the first instance, an angle x such

that

—

R
^..

and then equations (27) and (32) can be written in the

forms

—

tan J (a,, —a,) = tan {x —45°) • tan J S (34)

a,, —a, = tan {x —45°) • %"
(3 5)

And since the angle x —45° can never be more than a few
seconds in magnitude we have, in lieu of 35

—

a,, —a, = )§" • {x —45°) sin 1" (ae)

Moreover, it is evident, that in actual practice, we infer

—

from (31) and (15)— that—

approximately (37)

tana; = ^'
(33)

Zj Oi, 2// OL.,

and .'. z, a. sin a. R
z.. a,. sin a.. R.

(as)

shewing that the auxiliary angle x of (33) has its tangent
equal to the ratio of the angles of depression of the chord,
and also equal to the ratio of the arcs z^^ and z^.
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Lave, rigorouslj

(-)

11. Again, from the triangle SJS,,, we have, rigorously-

sin Q, cos a,,

sin O,, cos a,

Hence it follows that for any pair of mutually visible

stations, such as occur in trigonometrical surveying, we may
assume

—

sin O^

sin Q,
1;

. j2 1 their logarithms being the
' = 1 j \ same to at least 8 places - (40)

of decimals.
tan O
cos O,

1;
cos O,

(See formulae (30) and remarks as to its approximate accuracy.)

12. From what has been already shewn or observed, it is

evident

—

O,/ —O, = € —A (41)

and .'., we have from (23)

—

tan 1 (O, - OJ = «i^lK_ZL^) . tan i A (4.)
cos 2" -^

COS J S

and, since a^^ —a^ is but a fraction of a second, even when
2 is as much as 1°^^ 80'; and that a can be but a few
seconds in all cases that occur ; it is easy to prove that, in

the actual practice of trigonometrical surveying, the angle

O,, —O, will never exceed the to part of a second. And
from this and equations (40) it follows that we can regard

In the account of the trigonometrical survey of Great

Britain and Ireland, the magnitude of O,, —O, is shewn to

be always less than too 00 part of a second ; but it is not

shewn that the ratio of the sines or tangents of the angles

O,,, 0„ may be regarded as equal to unity for all pairs of

mutually visible stations : yet this is necessary, as, in some
instances, O,, and Q^ are extremely small arcs.

13. And if we put H, and S, to represent the small

spherical angles S,,D^D,,, S,D,,D„ it is evident that, in like

manner, we have

—

sml(DA-I>.E.).^
"

' cos 1 (D,E,, + D,E,) ^ ^

and it can be easily shewn that the difference of the angles

H,; and S, is as extremely small as the difference of the
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angles O,, and O,, and that they too can be regarded as

equal to each other. Moreover, the points D,OI),, are on
one great circle.

14. Now, since for all pairs of mutually visible stations

on the earth's spheroidal surface, we have

—

A, + A, = A, + A,,

and that we can express the angle w in terms of the angles

Ag + Aqo and the sides V, I", of the triangle S^PS,, ; there-

fore by substituting, in such expression, A, + A,, for its

equivalent, we have

—

tan J a, = "?'
f f/ 7 \\

cot i (A, + A„)
Sin ^ [L, -f- L,i)

This formulse is known as Dalhy's Theorem, for the history

of which see the "Account of the Principal Triangulation of

Great Britain and Ireland," page 236.

15. By appljdng Delambre's analogies to the same spheri-

cal triangle S^PS^^, we find in like manner

—

sin 1 (A, + A,) = ^^ii^ • cos J {l" — (46)
cos J V

COS I (A, + AJ =
?^^-f-^

• cos 1 (l" + V) (4,)

and
cos J

tani(A, + A„)= -|j;:-;:j -cot|.

cot i (A, + A,J - ^^^ 2
(I" + ^')

. foT. 1 ,.,

(-)

cos 1 {I" —I')

From (48) it is evident that when the latitudes of
the stations are of constant magnitudes, then the greater the
difference of longitude w is, the less will the sum of the two
azimuths be.

''CONVERGENCE OF MEEIDIANS."

The stations being supposed on the same side of the
earth's equator, the sum of the azimuths A, -f- A,, is always
less than 180°; and it is customary to call the defect or

180° —(A, + A,,)

the " convergence " of the meridians as respects the stations.

Putting C to denote this convergence, it is evident from 48
that we have

—

taniC = ^^f (^- + H-tan^o,
cos J {I, —;„)

^
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And should the latitudes of the stations be equal, then
putting I for the common value, we have the rigorous

formula
tan J C = sin I ' tan J w

or, since the tangents of small angles are proportional to the

numbers of seconds in the angles, we have, approximately

—

C" = sin ^ • 0)"

in which C" and w" represent the seconds in the "conver-

gence " of meridians, and in the difference of the longitude

of the stations.

16. And applying Todhunter's formula pertaining to

spherical excess (see page 72, formula 3, of his trigonometry)

to the same spherical triangle, we at once obtain the useful

relations

—

cotiz--cotir = -^"^t(^ + f--")2 2
COS J (A, + A,, + (o) , ,

tanir-tanir ^ _ cos HA. + A, + o.)

^ ^
COS i (A, + A,, —(o)

It is evident that instead of J l' and J r, we may write
(45° —1 i;) and (45° —J l^;) in formula (49).

17. From the spherical triangles S.PI, S,,PI, we have

—

. . sin A, cos a, . , sin A,, cos a,,sm d), = r^—t; : sm d>,, = ^^^— 'i^' sm 6 '
^"

sin 6

sin A, _ sin <^, , cos a,,

sin A,, sin ^^^ cos a.

But from the plane triangle p.C^p,,, we have

—

sin <^. _ K,^ cos I,,

sin <^,, E, cos I,

.'. also the rigorous formula

—

sin A, E,,, cos I,, cos a,, , .

sm A,, K, cos I, cos a,
^

And since for any pair of mutually visible stations, such as

occur in trigonometrical survejdng, we mayassume —̂= 1,

.*. we have —

-

(-)

sin A, K„ cos ^.

sin A,

cos I,,

R, cos I.

sm \/l- e' sin^ I.

sin A, COS Z, ¥ 1- e' sin^ l.

sin^ A, _(1- - e') tan^ I, + 1

sin^ A,, (1 —e2) tan^ I, + 1

(true to at least 8 decimals places in theh logs.)
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From either of these we at once perceive that, with

respect to mutually visible stations, the ratio of the sines of
the azimutJis will remain sensibly constant when the lati-

tudes of the stations are of constant magnitudes, no matter

how the difference of longitude or the intervening geodesic

arc may vary in magnitude.

18. If we find an angle V such that

—

, K,. cos I,, / V

tano- = :^ f (54)
K, cos Z,

then from 51, we derive

—

tan I (A,- A) ^ , _ ^^
^ ^

tan \ (A, + A,) ^ '
^ ^

.-. tan \ (A, —AJ = tan \ (A, + A,,) • tan (o- —45°) (se)

tani(A,-A.)=£^i4^^i^ • tan (cr - 45°) • cot J <o (.,)

From this equation it is evident that when the

latitudes are constants, then the greater w is, the less will

the difference of the azimuths be. Wealready know that,

in such case, the less also will be the sum of the azimuths,

and .'. the less will each of the azimuths be.

19. It is evident that A^ —A^,, = A, —A,, + 2 O
and .*.

and from this and (57) it is evident that when the latitudes

of the stations are constants in magnitude, we have

tan{i(A, —A,,) + n} . .

^-^ —' ,^ "' '

,
-* = constant.

tan I (A, —A,,)

And since the greater the difference of longitude of the
stations is, the less A, —A^^ must be ; .'. the greater w is, the
less will O be.

20. From the spherical triangle S,PS,,, we have

sin (A,, —O) _ sin V

sin (A, + O) ~ sin I'

sin A,, sin I' —sin A^ sin V
.*. tan O = 7 ; jr. —

;

\
-.

j. (59)
cos A,, sin V + cos A, sin V ^ '

t^ In such cases as occur in trigonometrical surveying
the angle O will range from zero to a limiting value of about
10',, 00". In the case of the worked-out example in the

sequel, the value of O is 7',^ 22" nearly.

21. From the spherical triangles S,PI, S,,PI, we have

—

sin ^ sin <^, = sin A, cos a,

sin Q sin ^„ = sin A,, cos a,^
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Multiplying both sides of these equations by the chord h,

and remembering that the projection k^ of the chord on the

plane of the equator is equal to k. sin 0, we have

—

k • sin A, cos a, = k^' sin
<f)^

k • sin A,, cos a,, = k^' sin
<f>^,

But from the plane triangle p.C^p,^ we know that

R, cos I, sin o> R,, cos l^, sin o>

°
~

sin 0,
~

sin </>,^

.*. we have

—

(«o)
k ' sin A, cos a, = R,^ cos I,, sin w
^ . sin A,, cos a,^ = R, cos l^ sin 'w

And, since ^ = 2s • sin |^ 5 -f- ^ • sin V, we have

—

2s • sin A, sin -^ ]§ • cos a, .

^ . g^ j„ = R,, cos I, sin w (e i)

2s • sin A,, sin J ^ • cos a,^
;^-; —i

—

Yi,
= R^ cos l^ sin <o

And since for any pair of mutually visible stations cos a, =
cos a,, = cos J ^,

s • sin A, • sin 3 _, , .

:§ • sin 1" = ^'' ^°' ^'' "'^ "
(e .)

s • sin A,, sin 5 ^ , .—̂ -.
—

t77
—= K, cos C, sin o)

2 • sm 1" / /

When the geodesic arc s is such that its circular measure 5
is not more than 1°, we immediately deduce the relations

—

s • sin A,
0) =

R,, • cos I,, • sin 1"
/ X

s • sin A.,
0) = —,

R, • cos I, ' sin 1"

l^° In Chambers' "Practical Mathematics," and in the

article on " Geodesy" in Spon's Dictionary of Engineering,

the formulae (63) are given in an erroneous form which must
inevitably lead to incompatible results when applied in

trigonometrical surveying. The erroneous formulae given

there and elsewhere are

—

s • sin A, s • sin A.,
(0 = i = 11

R, • cos I,, ' sin 1" R,, • cos I, * sin 1"

(See note 6 to problem 10 given in the sequel.)

22. From 50 or 60 we have-

cos a, _ R,, cos l,^ sin A,,

cos a^, R, cos I, sin A,
(")
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But (14) sin a, R,, . .

tan a, _ cos I, sin A, . ^

tan a,, cos Z,, sin A,,

From these we can easily express the squares of the sines,

cosines, and tangents of the angles of depression of the

chord in terms of the two latitudes and two azimuths ; but
it is obvious that such expressions must assume the inde-

finite form % when the latitudes are equal, or R, = R,^.

And from (64) and (27), we have

—

, i / I \_ /^/ + ^//V l^n ^^^ ^// ^^ -^'1 —̂/ ^^^ K sill AAi
tan 2 ^a, + a,)-\^^-— ^y •

\^^ ^^^ ^ ^
^.^ ^ _^ ^ ^^^ ^^ ^.^ ^f

tan 1 (a —a\-( ^'~^" Y' Z -^// cos I,, sin A,,— R, cos I, sin A, U
2 V - 'J

\_R^ _|_ ^J Ve,^^ cos Z,, sin a,, + R, cos I, sin A/
The expression for tan J iS or tan \ {a^^ + o&J, given in (67),

is of a hke character. It assumes the indefinite form %when
R, = R,^; which is the case on a spheroid when the latitudes

of the stations are equal, and always the case on a sphere, no
matter how the stations may be situated with respect to

each other.

23. From the triangles D^SJ, B^^S.J, we have

—

cos a, sin D,

cos (z„ —a,) sin A,

cos a„ __ sin D,^

cos (z, —a,) sin A,^

. -r^ COS I,, sin (0
sm D, = :^

sin D„ =

sin z,

cos I, sin <o

(eO

(-)

(71)

And from these we at once obtain the relations

—

. sin A,, cos a,,
cot z, = —r^ "— __ tan a,

cos l, sm 0) cos a, '

. sin A, cos a, ,

cot z.. = —r^ ——tan a,,

cos l^ sm <o cos a,,

If in these we substitute the values of sin w from (60) we
have

—

. ^ • cos a,
tan z, =

, .

'

R, —A; sm a, y v

(72)
. A; • cos a,,
tan z,, = Ji

XV,, —/c ' sm a,.
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From the triangles S,S,,Z,, S,^S,Z,„, we have—
k ' cos (z, —a,)sm 2, = ^ ^'

k ' cos (z,. —aJ
sin z,, = ^ ^^

And for stations which do not differ in latitude by more than
1°, we know that cos (0 —a^ cos (z^^ —a^), and cos J ^,

are the same to 8 places of decimals in their logarithms;
.'. for such stations we have the closely approximate for-

mulae

—

k ' cos A 5
sin z^ = —-^

—

^' (-)

But in order to find z^ and 0^^ in the actual practice of

trigonometrical surveying (the latitudes of the two stations

being such as do not differ by more than 1°) we have the

well-known simple formulse

—

_ s

^' ~ R, • sin 1" , .

(75)
&

Zn =
R,, • sin 1"

which enable us to find z^ and z^^ to within toVo part of a
second of rigorous accuracy. This can be easily seen from
the following

—

Wehave the rigorously true equation

—

R, • Q, • cos 8, = R,^ • Q,, . cos S,,

in which (as is shewn in the sequel) 8 and S^^ are always
each less than 16 seconds, and differ from each other by less

than 0*2"; and as we know that under such circumstances

the logs, of cos 8 and cos 8^^ will be the same to 10 places of

decimals, .*. we can assume

—

R, • Q, = R, • Q,
But R/ -h Q/ = R,,2 _|_ Q 2 absolutely,

R^ = Q,, nearly

R,^ = Q^ nearly

Hence if I^, \^, be put to represent the bases of the isosceles

triangles having the angles , ^, as vertical angles, and
sides equal to R^, R^^, respectively, we have

—

1/ = r; + r/ _ 2 R/ cos z,

= R/ + Q,; —2 R, • Q, cos s,
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and .*., obviously, we have z^ = —
,
—

—

•^' R^ ' sin 1"

And, I,- = Ps/ + R,r —2 R/ • cos z,,

= R,2 _|_ Q^2 _ 2 K^^ . Q^ . cos z,

= P
s

:., obviously, we have ^a = ^—-—
rr,*^'

R^^ sm I"

Nevertheless it is evident that the perpendicular let fall

from the station S^ on the line S^^Z^, lies inside the triangle

S^Z^S^^, and that the perj)endicular let fall from S^^ on the

line S Z lies inside the triano-le S Z S ; and .". that 1 ~7 h,
O OO _ O O 00 00 ' / '

and also l^^i h; and that, with respect to absolute accuracy,

we have

—

"' R, sin 1" ^ " R,^ sin 1"

However, the values of z^ and z^^ as given by (75) are such
that for a distance of a degTee along the meridian they
cannot differ from the absolutely true values by as much as

Tu of an inch of error in the length of s would cause. (See

"Account of," &c., page 247.)

It is no easy matter to guard against inferring that

z,, can never be greater than -.
—̂, ot (a + a). But

that z^^ can be greater than a^^ + a^ may be easily seen in

the following manner :

—

It has been already shewn that in all cases in which l^ is

greater than l^^, we must have D^ greater than A^. Now if

we suppose the point S^ fixed on the spheroidal earth (and
.'. S^ also fixed on the unit sphere), and that the point S^^

(which has S^^ as corresponding point on the unit sphere)

assumes at first a position such that I, = l^^, and then moves
continuously along the meridian in which it is situated,

makino: I less and less until the ano-le A, becomes = 90°,

then of course D, from being equal to A, at the commence-
ment must have increased continuously until at length it

exceeded 90°. And it is evident that at one state of the

implicated entities, the angle D^ was 90°, and A/ less than
90°, and .*. that in such state sin A, was less than sin D,.

But if we were to assume that z^^ should be always less than

^// + <^/> 01' never greater than a^^ + a , then ID^ should be
always greater than IS^, and .*. sin A^ always greater than
sin I)„ which we know to be absurd.

D
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Moreover, it is evident that by putting Y to repre-

sent the particular value of the angle A, when unequal to D^
but such that sin A, —sin D, (m which case A, is acute and
D, obtuse) it is evident that

—

whenever A^ 7 Y, then will z^^ l a„ -\- a^ ot%
whenever A, l Y, then will z,, i a,, -\- a, or 2

Hence :—If S^^ be any fixed point within any convex closed

curve on the earth's spheroidal surface, and Z^o the point in

which the normal to the surface at Soo cuts the polar axis

:

then there are 4 real points S^ on this curve, and 4 only,

such that the angle S„„Z^^S„ subtended at Z^„ is equal to

the sum of the angles a^^, a^, of depression of the chord S^^^o
below the tangent planes at S^^? ^o- ^iz. —The two points

in which the curve is cut by the plane X through S„„ which
is perpendicular to the polar axis ; and the two points lying

on the same side of X, and such that the azimuth of S^ taken
at S^Q is acute, and the azimuth of S^^ taken at S^ is also

acute but gTeater than the other, and approacliing very
nearly to 90° owing to the earth's small ellipticity.

24. From the triangles S^^PB^, S^PD,,, we have-

sin z„ sin A„
sin L'

sin 0)

. T // sin z, sin A,sm L" = '-
'

sin o)

cos L' = cos z,, cos I" 4- sin z,, sin I" cos A,,

cos L" = cos z, cos V 4- sin z, sin V cos A,

, T- / cot A,, sin (0 + cos I" cos w
cot L = r—ism I"

, T „ cot A, sin w + cos V cos w
cot L" = '-

!

sm I'

(,s)

And since L' and L" are the circular measures of the angles

between the lines S^Z^^, S^^Z^, and the polar axis, we have
evidently

—

cot L' = e'- ^" ^^^
\' + (1 —e') tan I,

K, cos t, / V

(79}

cot L" = e^ ' =-^ -' + (1 —e^) tan I..

R,, cos l,j

25. By letting fall perpendiculars from Z^, Z^, on the
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normals E,^, R,^, we easily find the following expressions for

8, and 8,,—

^ _ e^ (K, sin l^ —R,^ sin l^) cos I,

' R, —̂ (R, sin ^ —R,, sin /,,) sin I, , x

5j _ e^ (R, sin l^ —R,^ sin I,}) cos l„

\
~

R,, + e"- (R, sin Z, —R,, sin ZJ sin I,,

And from the plane triangles whose bases are Z^Z^^, and ver-

tices S^, S^^, we have

—

5> ^ (R, cos V —R,, cos l') sin L'
sin 8, = —̂̂

—

'- '-

• 2, ^ (R, cos V —R,, cos I") sin L"sm 8,, = —^-^ -^ 1

Again, from the triangles S^S^^Z^, ^0^00-^00' ^^ ^^ evident

that

—

R, cos (z. —a.) R,, cos (2,, —a,,) / N

Q,^ COS a^ Q^ cos a,^

and, to 8 places of decimals in their logarithms, we have

—

R/ R/, -I / \

Hence, from the triana^les Z Z S , Z Z S„ , we have the
^ ' o o 00 o' o 00 00'

relations

—

sin U _ R^ sin L" _ R,,

sin l^ ~ E,^,
' sin I" ~ R, .

snch that their logs, are the same to 7 places of decimals.

And if in the first and second of (81) we substitute for

^, and ^ the above equivalents, we have with an accuracy

to at least 7 places of decimals in their logs.

—

sin 8^ = e^ (sin L' cos r —cos I" sin l') , x

sin 8,, = e^ (cos I' sin I" —sin L" cos I")
^^^^

which we may write in the forms

—

S, = e^ < —cos I" sin (L' —8,) + sin L' cos (L' —8,) >

sin 8,, = e^ \ cos r sin (X" + 8,,) —sin L" cos (L" -f 8,,) >

And if we expand these and regard cos 8, = cos 8,, = 1

(which we can do since 8, or 8,, is always less than 20'^) we
easily find

—

. - e^ ' (cos L' —cos I") sin L'

'
~

(1 —e'^) + e^ (cos L' —cos I") cos L'

sm
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^ ' (cos I' —COS L") sin L"
sin 8,/

(1 —e^) —e^ (cos I' —cos L") cos L"

which we may write in the forms

—

. _ 2 • e^ • sin I {I" + L') sin l (l" —L^) sin L^
^^^

'
~

(I —e^) + 2 • e^ • sin i (^" + L') sin ^ (Z" —L') cos 17

(ss)

_ 2 • e^ . sin 1 (L" + I') sin i (L" —Z') sin L"
^^^

" ~
(l —e') —'2 -e'^' sin J (L" + r) sin J (L" —/') cos L"

(to be used when extreme accuracy is desired.)

Hence evidently (since S, or S,, is always less than 20 seconds)

we have

—

sin 8, = 2 (
:j ^j sin L' sin J (^ + L') sin | (^" —L')

sin 8,, = 2
( ^ _^ ^2

)sin L'' sin J (L" + ^') sin i (L" —Z')

giving 8, in excess, and 8,, too small. However, in all

ordinary cases, they give values of 8,, 8,,, correct to toV o part
of one second. And since

—

sin J (Z"+ L') sin J (^"— L') = sin (D, —A,) • ^^^li^

= 1 • sin (D^ —A,) tan J ^,,
•

^^^
sin 1 (L" + I') sin i (L" —I') = sin (A, —DJ • ^^^Hl'

^ ^ '' sm <o

= A • sm (A, —J) J tan ^ 2, • -; —r-

Therefore we have the equally approximate relations

—

sin S, = 2 (^^ sin L' •

"° ("' " ^->
• sin» ^ .„^1 —e / sin o) -^ "

I e^ \ . ,,, sin(D, —AJ= \t ^/ sm^ L • ^—7 tan l z,, , .
^1 —e-/ sm A^, 2 //

(^g)

o ^ e' A . ;,, sin A,, sin (D, —A,,) . „
^= 2 I .j -J sin I" '

". ^ ^ '^ • sin^ 1 z,,
^1 —e^ sin D, sm w ^ //

/ ^ \ sin A,, sin (D, —A..) . ^= 1

1
-i I

— =-2 • Sin- z.. ' tan A z„
Vl —67 sm^ (0

// 2 //

Z'
^^ ^ • 2 7„ sin A,, sin (D, —

. A,,)
,= Vl -/ ^1^ ^ * • 2 >> ^ * tan 1 z,,^1 —6;-/ sin'' D, 2 //
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•
s^ o / ^^ \ • T '/

sin (A, —D,.) . 2 1sin 8,, = 2 ( -I sm L" ^-^ '^ • sm'' k z,
VI —e'*/ sm <o

/ e^ \ . , sin (A —D,,) , ,=
[ -J

sm^ L" • K^ '^ ' tan | z^

VI —e''/ sm A,

1, sin ( A^ —
sin D,, sin w

(i^.)

/ e^ \ . ,, sin A. sin ( A, —D.,) . „ ,

[-, J sm V '
: 1,

' sin' i 2,
\1 —e z sm D,. sin w / v

f 8 6 j

sin A, sin (A, —D,,) . o x ^
'-—-4

—

—sm'' z, • tan 4 z.

sm'' 0)

/ e^ \ . ^ sin A, sin (A,— D,,) . ,

-=
( T

J sm- Z'
• '

. ^^ ^ tan i 2,
\1 —e^^ sm'' D,,

And since the arcs z^, z^^, do not exceed 1° in the usual cases

of trigonometrical surveys, we have, with sufficient accuracy
for some purposes

—

8, = (1—^2) • sin L' • sin J {I" + L') • {I" —L')

1 / 6^ \ • T/ sin (D, —A..) 2 -1,,= 1 (- A ' sm L' • W ^ • 2',, • sm 1"
\1 —ev sm (0

1 / «^ \ . 2 T / sin (D .
—A ,.)M—e-/ sm A,, , .

(87J
, / e^ \ sin A,, sin (D, —A,,) • 7,, 9 • i,,= J (^ 2) \ T,^ / ' sm I" ' r, • sm 1"

Nl —eV sm i), sm a>

— 1 ( e^ \ sin A,, sin (D^ —A,,)
.

^ \1 —e^' sin^ oj

sm^ 2;,,
• z,

sin A,, sin (D, —A,.) . 2 7//sm^ I" ' z,

sin^ D,

K = {y^^ ' '^ ^"
'

'''' * ^^" "^ ^'^ ^^" "" ^'^

T
/ 6^ \ . -r// sin(A, —DJ o . ,„= A I

. ) • sm L" • ^-^. ^- 2^ • sm 1"M—e^/ sm o)

1/ e' ^ • 2T„ sin (A, —DJ

(88)

T
/ e^ \ sin A, sin (A, —T>.) . ,, , • 1 /,= 1 ( )

'-—_L_j: '21 • sm Z • 0^^ • sm 1'
\1 —ev sm D,^ sm w

,/ e^ \ sin A, sin (A, —DJ , • 9 i„= il-^ r,

)

' r\^ '^ ' ^, • sm^ 1"
^ ^1 —e^^ sm'' (0

1 / 6^ \sin A, sin (A, —D..) . , „

^1 —e^^ sm'' D„
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|^p° Referring to tlie approximate relation

—

sin r _ sin L"

sin L' sin I"

made use of in arriving at the preceding values of 8 , 8^^, it

may be proper to observe that we must not always use it as

if it were rigorously true. If so used we should, as a con-

sequence, have

—

sin A, _ sin D,^

sin D^ sin A.^

and therefore the first side of this equation always less than
unity, which we know to be absurd. Hence we perceive

that the adoption of the above approximate relation is

equivalent to assuming that between the limits of the

possible values of A^ from the state in which A^ = D^^ to

that in which A^ = V, we have sin D^ = sin A^, and sin

A^^ = sin D^^ so nearly true that their logarithms are the

same to 7 places of decimals. However, we will now shew
how those small angular differences can be computed.

26. It is evident that the amount by which the angle A^^

exceeds D^^ is truly expressed by the spherical excess of the

smaU triangle S^S^^D^^. It is also evident that the amount
by which the angle D^ exceeds A^ is expressed by the

spherical excess of the small triangle S^S^^D^. Hence (see

formula 4, page 158, Serrets', &c.)

—

cot J A,, = cot I D,

tan 1 A,, = tan J D,,

tan i A, = tan J D,

cot J A, = cot ^ D,

cos 1 (z, + K)
COS J {z,

COS 1 {z,

-K)
-s»)

COS i {z,

COS J (z,^

+ S„)

COS ^ {z,,

COS J (z^, -S,)

(a.)

COS 1 {z,, + 8,)

We have also (see formula 3, page 158, of Serrets' Trigo-

nometry) rigorously

—

tan
,

(A, DJ _ i_tanl,^tan'l8.,cosD, (90)

tan 1 (D. - A,) - ^^"^ * ''' *^^ * ^' '''' ^'
1 + tan f z,^ tan J 8, cos D,

And the angles J (A^^ —DJ, J (D —A^), being but
fractions of a second ; and the values of tan J z^ ' tan J S^^
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cos D^^, and tan J z^^ tan h 8,
' cos D^ being so extremely

small, it is evident we can Und the values of the angles A^^

and A^ to the t o o o o P^^^ of a second by means of the amelio-

rated formulae

—

tan J (A^^ —D,J = sin D,^ tan ^ 0, * tan J 8,, , .

tan 1 (D, —Aj = sin D, tan J 2,,
• tan J 8,

^^ '^

Wecan also arrive at these in the following manner

—

From formula (1), implicating spherical excess, on page
157 of Serrets' Trigonometry, we have —(since in actual

practice of surveying the logs, of cos J v, cos J z^, cos J z^^,

are the same to 6 or 7 places of decimals)

—

sin i (A,, —D,,) = sin D,, • tan J 2, • sin J 8,, , v

sin i (D, —Aj = sin D, • tan J 2,,
• sin 4 8,

^^'^

.*. also A^^ —D,^ = sin D,, tan J 0,
*

8,, / x

D, —A, = sin D, tan J 2,,
• 8,

^''>'

or, A, —D^^ = 1 . ,^ 8^^
. sin 1" • sin D,

D, —A, = J
•

2,,
• 8/- sin 1" • sin D,

And from these and formulae (87) and (88), we easily find

—

A,~D.

= i

= i

D. - A, = I

= i

= i

1 —e'^ sin I' ' sin L" sin (A, —D,,) • 0,^ X sin 1"

l —e'

e-

. sin^ I
^ ^

sin A, sin (A, —D
sin D,

^•2/x sinl"

. ,, sin A, sin (A, —D,,)
sin V ' '-—-^^ —'^ '-^ '

sm (o

z? X sinn"

1 —e'

' sin I" • sin L' • sin (D, —AJ • z,,^ x sinl "

1 —
v,2

Sin ,^„.
sinA„sm(D,-A„)

. ^^,
sin D, '

sin I
„ ^

sin A,, sin (D, —A,,)
2 ' X sin^ 1"

1 —e" sm (0

In the "Account of the Principal Triangulation of Great
Britain and Ireland " (see pages 248, 249, formulae 32 and
36), the following erroneous expressions are given

—

A, = i • ^-^, • cos^ I, sin 2A, • z\ x sm V
(-)

D.

D, —A, = J

1 —e'
o2e"

/ cos^ l,^ sin 2A,, * s^, X sin 1"

with respect to which we may observe

—

1°. From them we should infer that D^^ —A^^ and D^ —A^
have finite values when the latitudes of the stations are
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equal ; but we know, in any such case, that the angles D^^,

A^^, D^, A^, are equal.

2°. From the first of the equations we should infer that A^^

is less than D^^ when A^ is acute ; but we know that A^^ must
be always greater than D^^, when l^ is greater than l^^, or

when A^ is greater than A^^.

3°. In the example 1 worked out in this paper, we have,

by using correct formulae

—

A,, —D,, = 0^' • 1334; D, —A, = 0" • 1334.

But if we were to use the above erroneous formulae, we
would find the values

—

A,, —D,, = 0" • 1315 ; D, —A, = 0" • 1352.

^p° On page 676 the formula 96 is misprinted :
- —̂77

being there used instead of sin V.

27. From (4*6) and (47) it is easy to deduce the following

expression

—

. 1 _ J cos ^ (A, + A,, + x) cos 1 (A, + A,, —x)
aLlX 7) V

:;;
;—

7

; r^
COS i (A, + A,J

in which the angle x is found from

—

sin J a; = sin J {I, + l^) • sin | w.

28. The perpendicular from Z^^ to the line B^JZ^ is equal

Z^Z^^ • sin L"; and .*. it is evident that the perpendicular

from Z^^ on the normal-chordal plane S^S^^Z^ is equal to

Z^Zoo • sin L" • sin D^^. But the perpendicular from Z^^ on
the chord SoSSoo is evidently equal to R^^ • cos a^^: Hence,

obviously

—

Z Z,, • sin L" • sin D,,
sin A - ° °° ^'

K,^ ' cos a„

But,

Z<,Zgj, = e^ (R^ sin l^ —R.^^ sin l^) ; sin L" sin D,^ = cos l^ sin A^

;

and
R, cos I, sin CD

cos a„ = —L -1 _
k ' sm A^^

Hence we have

—

2 7 sin A, sin A,, /sin I, sin l.\ , .

sin A ^ e-k' L '1 • i_^ ^\ (93)
sin o) ^ R// R, /

7 R^ —R^/ sin A, sin A,, /-o • ?/ , -n • 7 \ —

1

sm A = « -^ rr— ^ T
' (xv

.
sin I + K,, sin I,)

K, • K,, sm o)
.

sin A =-pr —̂

—

'-, -^ ''{ ——• (cos^ I,, sin^ A,, —cos^ I. sin^ AJ
R, sin t,+R,, sm I,,
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These expressions are rigorously true, and can be used in

other investigations.

Wehave also from the triangles IS,D^, IS^^D,,,

—

sin 8, ' sin D, sin 8,, sin D,, , ^

sm A = r^^ —= Tv

—

('0 1/
cos J 2 cos -I 5 ^ ^

l^p° In the "Account of the Principal Triangulation of

Great Britain and Ireland," the following expressions are

given

—

A = e^ • sin 2 A, • cos- (l, + I,) 'i^ / v

A = 6^ • sin 2 A,, • cos^ {I, + Z,) •

J S ^'''f

That this formula is erroneous is easily seen : for indepen-
dent of the oversight committed in assuming that sin 2 A^
is equal to sin 2 A^^, we know that any expression repre-

senting A must vanish when the latitudes l^, l^^, are equal

;

and this is not the case with formulae (102).

29. When the stations S,,, S^o, are mutually visible (not

more than 100 miles apart), it is evident that if from the

middle point of the arc v we conceive perpendicular arcs

drawn to the circles S,D,,, S,,D,, they wiU form two right

angled spherical triangles (having vertices at S^ and S^J,

which may be considered equals in all respects. It is

evident that two of the sides of either of these triangles are

equals to J v and J :$, and that the third side of either may
be regarded as equal to J a •

From this relation connecting the angle between the

normals, the angle between the normal-chordal planes, and
the circular measure of the geodesic arc between the stations,

we have

—

cos J 1/ = cos J A • cos J S (103)

sin J A = sin I V • sin O (104)

tan
"I"

A = sin J S • tan fl (i 5)

tan J 5 = tan J v • cos O (los)

simple relations which wiU be found very useful in practical

work of trigonometrical surveys.

30. The following expressions for the cosines, sines, and
tangents of the angles of depression of the chord are

rigorous with respect to any two stations on the earth's

spheroidal surface; and the easy methods by which they
have been deduced (from what has been akeady done) are

omitted, as they can present no difficulty to the reader.
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K,, cos I,, sin CO
cos a, = —̂̂- r^^—

k • sin A, . / X

•(107)

_ E,, cos l^ sin (o

k ' sin A,^

R, cos I, —E,,, cos I,, (tan Z, cot A, sin w + cos w)
sm a, = -^ V -,

'

k. • cos 0, / X

(los)

R,, cos I,, —K, cos I, ( tan,, cot A,, sin w + cos w)
sin a,, = -^^ '- 9 '^j ^ ^

A; • cos t,,

E,,E,,, (cos L cos ^, cos w + (1

—

e^) sin ^ sin ^,,) —a^

^"'"'^ —̂

—

k-i
——̂

-

(109)
E.,K,, (cos I, cos I,, cos (o + (1

—

e^) sin I, sin ^,,) —a^
sin a, = ^ — —̂̂ —

. R, sin A, cot w sin A, + sin I,, cos A,
tan a = —— —

'

' R,. • cos I,, sin 0) cos ^ / v

(110)

, R,, sin A,, cot w sin A,,4- sin I,, cos A,,
tan a,, =

-r. j • — -^ ' '

K^ cos I, sm w cos l^^

_ cos I, 'R,, sin A,, cos A,+ R, cos A,, sin A,

sin A„
'

R,, sin l,,-\- R, sin I, / v

, cos L, R,; sin A,, cos A,+ R, cos A,, sin A,
tan a^i = — * - ~ —

sin A^ R/^ sin l^^-\- R, sin I,

31. By equating the values of sin a^ given in (108), (109),

we have an equation from which we can at once express

cot A^ in terms of the two latitudes and the difference of

longitude w. And equating the values of sin a^^ given in

(108), (109), we can express cot A^^ in terms of the two lati-

tudes and difference of longitude. However, we can find

other expressions for the cotangents of the azimuths, thus

—

From the spherical triangles S^PD^^, S^^PD^, we have
, . cot L" cos I, —sin L cos w

cot A. =
sm 0)

cot L' cos L, —sin /,, cos w

tan a.

cot A,
sm w

And if in these we substitute the values of cot JJ', cot 1/,

given in (79), we have

—

"PW e^ sin l^ cos I, + (1

—

e^) sin I,, cos I, —sin l^ cos l,^ cos co

cot A, = ^
-,

cos I,, sin o) / V

(112)
T>

^ • ^ sin l„ cos I,, + (1

—

^) sin l; cos l„ —sin l„ cos I, cos <o

cot A„ = -L ., —-, :

COS L. sm <i>
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These have been arrived at by other means in the "Account
of the Principal Triangulation of Great Britain and Ireland."

Moreover, from the spherical triangle S^PS^^, we have

—

sin I., cos /, —sin I, cos I,, cos w
cot A^

cot A,

cos I,, sin (0

sin l^ cos 1,1 —sin l,, cos Z, cos w

cos l^ sin w

E,, . , • 7 \ e^ ' cos I.'
'* cot A, —cot A_ = (—^sinZ, —sinZ,, ) , .

^R,, ^ cos I., sin w/ V

cot A,j —cot Aoo= (—^' sin I,, —sin Ij • ^-^
\ix, ^ cos I, sin CO

These also are given in the "Account of the Principal

Triangulation of Great Britain and Ireland " (see page 231
of that work).

32. From (60) it is evident that for any pair of mutually
visible stations, we have

—

7 _ E,^ cos Z, sin w

sin A,, cos 4 2

7 E^/ cos Ij, sin 0) , ,

sm A, cos J 2
7 XV, rV,, sm O) / 27'OA 97'0*\

(R^, —R^ji sm A, sm A,,
^

the last of which is rigorously accurate for any two stations

on the earth's spheroidal surface, and a direct expression in

terms of the two latitudes and difference of longitude ; but
it assumes the form § when the latitudes I,, l^^, are equal.

^^ ^ sin^ a, W,, 1 —e^ sin^ L . ,,
33. From . ., = -^ = = o . . 7 > we have the

sm- a,, R^, 1 —e'' sm'' I

J

rigorous formulae

—

2 sin^ a,, —sin^ a, , v

sm'' I, sur a,, —sm^ l,^ Bmr a,
'

6^ _ cos^ I, sin^ a,, —cos^ l^, sin^ a, . .

2? sin^ Z, sin^ a,, —sin^ Z,, sin^ a,

applying to any two stations whatever on the earth's

spheroidal surface.

From (53) we have

—

2 _ sin^ A ,, sec^ Z, —sin^ A, sec^ I,, , .

sin^ A,^ tan'^ I, —sin^ A, tan^ l„

h^ _ sin^ A, —sin^ A,^ , .

a^ sin^ A,^ tan^ Z, —sin^ A, tan^ I,,

(Holding true to at least 8 places of decimals in their logarithms.)
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The expressions for e^ and -gin 115, 116, 117, 118, assume

the form % when the latitudes of the stations are equal. If

the latitudes and mutual azimuths of numerous pairs of
suitable stations be carefully found from actual observation

with good instruments, &c., it is obvious that 117 and 118
will enable us to find the most probably correct or suitable

value for the earth's eccentricity in the locality of the

survey. And the great importance of having such a value

of e will be obvious from the examples worked out in the

sequel.

We can easily find other expressions for e^ from 78 and

79, by substituting in (79) the values of -p-" and ^' given

in 51.

34. It may be seen, from a glance at the figure, that when
the two stations have not the same latitude, a difference in

the heights of the stations (with respect to the earth's

spheroidal surface) will introduce errors into the observed
values of the azimuths A^, A^^ and other azimuthal readings.

1°. It is evident that accordinn^ as the station S is highero oo ^ o
or lower than the station S^ by the length h, so will the

observed azimuth A^ be too great or too small by an angle ^u,

which the length expressed by Z^, X sin a subtends at the

distance s. And according as the station S^ is higher or

lower than the station S^^ by the length h, so will the

observed azimuth A^^ be too small or too great by an angle /x

which the length expressed hjhx sin a subtends at the

distance s.

2°. It is .*. obvious that when the station S^ is higher than
the station S^^ then will the azimuths A^ and A^^, as found
by direct observation, be too small ; and when the station

S^^ is higher than the station S^ then will the azimuths A^
and A^^, as found by direct observation, be too large.

I^p° To find the error of correction [x, we have

—

w, = - • A
s

Now, in an example given in the sequel, we have s = 513,906
feet, and a = 10'^'85. And according as we suppose the

station S to be higher or lower than the station S by the
O O 00 «/

length h —10,000 feet, so will each of the azimuths A^, A^,

be too small or too great by
[X = 0" -211
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35. We will now consider how the magnitude of the

angle a varies when the stations S^, S^^, are supposed to be
situated on two fixed parallels of latitude, and at such dis-

tances asunder as may or can occur in trigonometrical

surveying.

From equation 100 we^at once perceive thac when the

latitudes l^, l^^, are constants, the angle a between the

normal- chordal planes increases or decreases according as

cos^ I,, sin^ A,, —cos^ I, sin^ A^ increases or decreases.

Or, if in this we substitute for sin^ A^ its equivalent as given

by equation 50, then we know that a increases or decreases

according as the expression

sin^ A,, ( R^, cos^ I., —'B?,, cos^ I, ' —^—^') increases or decreases.
^ cos- a/

Now A^^ being the necessarily acute and lesser azimuth, we
know that sin^ A^^ increases as the azimuth A^^ increases-

And, since = ^ is constant, and that a^, and a
' sin a, R,, " '

increase or decrease according as the difference of longitude

1 -J.' -J XJ.T- ^ 1 —sin^a,, cos^ a,,
0) increases or decreases, it is evident that :; . ^

or —5—'
1 —sin'' a^ cos- a,

decreases according as the difference of longitude increases
;

and .'. that a increases as w and A^^ increase up to that point

at which the trace of the normal-chordal plane containing

R^^ touches the parallel of latitude on which S^ is situated.

36. Other new and useful formulae can be easily derived

from the figure. For instance, from the spherical triangles

S,PI, S„PI,
cos = sin a^ sin I, —cos a, cos l^ cos A, .

cos ——sin a„ sin I,, + cos a,, cos I,, cos A,^
\^^'^)

.'. sin a, sin l^ + sin a,, sin l,^ = cos a, cos l^ cos A, , .

+ cos a,^ cos l,^ cos A,, ^ ^ ^ "-^

and hence with close approximation to absolute accuracy, we
have

tan a, sin I, + tan a,, sin l,^ = cos I, cos A, -f cos l,^ cos A,,

but tan a^ _ cos I, sin A,

tan a„ cos I,, sin A,^

And from these we easily find

cos l^ cos A, -f cos I,, cos A,^
tan a, = -.

—
-.

—
j
—

-.—7—

;

-,

—
-.
—

-,
—

-.—7— • cos L sin A,
' cos I, sin C, sm A,+ cos I,, sin L, sm A,, ' 'II /I n II n , .

COS I, cos A, 4" COS I,, cos A,^ .

tan a,, =
j
—

-.
—

-.
—

-.—r—

;

-,
—

-.
—

-.
—

-.—r— • COS L, sm A,,
" COS I J sin t, sm A^ -f- cos I,, sin t^, sm A,^ " "
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and .'.

^ . cos I, COSA,+cos l,^ cos A,, ^ ,

—
,
—-

—

-.
——

-

tan h^ = - —H^—^

—

A—;

—

—i^ —
'
—

a~' " Jcos I, cos I,, sin A, smA,.
^ sm 2^,sm A, + sm2 ^,, sm A,, v / //

/ -y

The expressions given for tlie tangents of the angles of

depression of the geodesic chord in (110) and (111) implicate

the assumed eccentricity of the earth, while the expressions

(121) depend entirely on the observed latitudes and azi-

muths. If applied to the example 1 problem 1 given in the

sequel (which may be regarded as an extreme case in trigo-

nometrical surveying) it will be found that the resulting

values of a, and a,, can be accurately determined to -^^^q-q

part of one second, —their logs, holding true to 8 places of

decimals.
p -p ,

By substituting in (111) the values ^ and ^ as given in

(51), we easily rearrive at formulae (121) ; and by like

substitutions in (110), we easily find the following values

for the tangents of the angles of depression of the chord —
true to at least 8 places of decimals in their logs —

. sin A,, sin A, cot w -\- cos A, sin I,
tan a, — " ' ' ' '

tan a,,
—

cos l^^ sin 0)
"

And when a,^ and a, are found, we have % = a,, + a,.

However, there are other methods of finding approximate
values of %, in terms of the latitudes, azimuths, and length
of arc between the stations, &c. ; but I defer their con-

sideration for a future paper.

37. With respect to the figure it may be observed that if

F^ and F^^ be the points in which the chordal plane NS^S^^
cuts the arcs PS^, PS^^, it is evident that the arc PF^ is

divided harmonically in S^, D^, and that the arc PF^^ is

divided harmonically in D^^, S^^. For the anharmonic ratio

of the points PF^S^D^ is the same as that of the pencil of

straight fines S^ • (PF^S^DJ, and /. the same as that of the
four points oo, N, Z^, Z^^, in which oo represents the point at

infinity in which the line S^P cuts the line CZ^Z^^, &c.

Hence the spherical pencil I • (PF^S DJ is harmonic.

cos I, sin (0 cos I,

sin A,,

cos C^ sm (0 '

sin A^ sin A,^ cofc w + cos A,, sin^,,

cos Z,, sin 0) cos l^,

sin A,
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oo'
Again, since S^F , S^F^^, S^, are parallels to NS^, NS^

NM, it follows that the arc F F^^ is bisected in ; and there-

fore (as arc 10 is a quadrant) the arc 10 is cut harmonically
in F^, F^^; and the spherical pencil P ' (lOF^F^J is harmonic.

NOTATION.

Whenany number n of stations are to be simultaneously

considered.

Let 1, 2, 3, . . . . y rif indicate stations on the earth's sur-

face.

„ ^i, ^2J ^3» • • • • > ^«> indicate the latitudes at these

stations.

„ K^jKjjjE-g, . . . . , K„, „ the normals terminating

in polar axis.

„ <^i2f ^2sf ^sif 5» the differences of longi-

tude between the pairs of stations 1, 2 ; 2, 3

;

3,4;.
Put A^ 2> -^2 1» ^^^ *^® azimuths of the stations 2, 1, as if observed

from 1 and 2.

„ A
2 3, A3 2, for the azimuths of the stations 3, 2, as if observed

from 2 and 3.

})

»
„ a

^ 2, a
2 1, for the angles of depression of the chord 1, 2, at the

stations 1 and 2.

„ a
2 3, a

3 2, for the angles of depression of the chord 2, 3, at the

stations 2 and 3.

if •• •

» •• •

„ ^i2» ^2 3> ^3 4> ^^^ *^® chords 1, 2 j 2, 3; 3, 4; of the sphe-

roidal triangle 1, 2, 3.

,j 5^2> ^i3> ^2 3> ^0^ *^® spherical measures a^^ + a^^;

"13 + *3i5 *2 3 + "32^ 0^ *^® ^^^^^ 0^ *^®

spheroidal triangle 1, 2, 3.

„ s^ 2> *i 3> ^2 3' ^^^ *^® lengths of the sides 1, 2 ; 1, 3 ; 2, 3; of

the spheroidal triangle 1, 2, 3.

1. For any n stations 1, 2, 3, n —1, n, on the

earth's spheroidal surface, we have the rigorously accurate

equations

^2 - sina,2
. ^3 - si^«23

. ^^ ^n
R, sina2^'E2 sin 032' R^-i

sm a« —1,

«

and.*. sina^^_i
B,^ _ sing, 2 -singes sin a,,_i;, '

^ ,

K, sin ag^ • sin g32 sin g^^„_i



S^ On Practical Geodesy.

And putting M to represent the reciprocal of the dexter of

this equation, we easily find

—

sin^ ln= -% —(-2 —sin^ l\ • M^ (i 2 4)

an equation expressing the latitude of the n^^ station in

terms of the latitude of the 1st station and the sines of

the angles of depression of the n —1 chords joining the

consecutive stations.

2. Wehave also the rigorously accurate relations

R2 COS I2 _ sin Aj 2 cos a,
^ ^

Rg COS Zg _ sin A23 cos a,
3

K, cos I, sin Ag^ cos a^^ ' R3 cos l^ sin A3 2 cos a^
^

and .'.

TR, nop / siri A Rin A .,., cos a cos a /
• 1 2 ^^° "'2 3 /, „

K. cos I sin A sin A .... cos a cos a*^UD Ug
J

l.UOU,3
2

J{l-e')t2.nH^ +

1

J {I- e') tan^ 4+1
and from this we easily find

—

„ / 1 \ /sin A„ ,
• sin A

tan^ 4 = ^^tan^ l^ + j-3772; ' \
3 2

sm A^, .sin A, 3,

/ cos g^^ • cos gg^ V ]_
Vcos g, • cos g„ ,

'
1 —

an equation expressing the latitude of the n'^ station in
terms of the latitude of the 1'* station, the azimuths, and the
angles of depression of the chords connecting the stations.

3. And from (123) and (125) we have-
cos l^

cos I. ^^„ , K.XXX -.^

(127)

sin A,, • sin A,,..

sm A.,
tan

• sin A3...
tan g 32

tan gj 2

4. Let 1, 2, 3, n —1, n,he any odd number of
stations on the earth's spheroidal surface, such that none
of the chords (12), (23), (^ —1, ^^), exceeds 100
miles in length. Then, from formula 49, it is evident we
have the relations

—

tan (45° —i I,)

tan (45^ —i Q
cos i (A,

3 + A3, + <",3)

COS1 (A,3
cos

+ A3,

J (A3
3 + A3, + ",.s)

cos i(A3 3 + A3,- <>..)
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tan (45° - j l^) ^ cos |( A3, + A,3 + 0^3 J
tan (45° - J l^) cos i (A3, + A,3 -CO3 J

cosi(A,, + A54—̂ 45)

33

(-b)

tan (45° —1 ^,,_,) _ cos 1
(

tan (45° —|

cos j- (

In) cos J ( ) COS J ( )

And therefore we have

—

L 1_^ =r the product of the dexters of these equations,
tan(4o°— 1Z„)

^
2 ^ '

an equation from which we can at once express the latitude

of the 71^^ station in terms of the latitude of the 1'* station

and the azimuths and differences of longitudes.

Should the to-^ station be coincident with the 1'* station,

we must have the dexter of (129) equal to unity. This fact

will be found to be of importance in case any even number
of stations form the vertices of a closed geodesic polygon.
For instance, if there be four mutually visible stations such
as B, C, D, E—

c c„ *c

B E B E B

then numbering the stations in the orders indicated in the

above diagrams, we have

—

cos|(A^,+A,,+<^i,)
.

cosi(A3, + A,3+a>3 4)

cos i(Ai 2+^3^—0)^ J cos^(A3,+A,3— CU3J

(A.3+A 32+^23) .
cosj (A,^+A^, + (u ,J
cos 4 (A,^+A^,— (u^Jcos 4(^2 3+^3 2—̂23)

corresponding to the stations taken in each of the three

indicated orders. And in the case of any such even number
n of stations (the first and last of which are coincident) it is

obvious that if all the azimuths be known, and that all the

differences of longitude with the exception of any two
which are consecutive be known, then we can easily (by

solving a quadratic equation) express the tangent of either

of these two differences of longitude in terms of the known
azimuths and differences of longitude.
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5. With respect to any three mutually visible stations

1, 2, 3, we can easily arrive at convenient expressions for

each of their latitudes in terms of their azimuths and differ-

ences of longitude. Thus

—

Wehave (49) and (128)—

tan (45° —h h)
' tan (45° _ J Z.) = —CQ« \ (^12+ A,,+ <^n )

^ " ''
^ ^ ^ cos 1 (A12+ Kx—W12)

tan (45°— I ^i) ^ cos \ (A13+ A314- (013) ^ cos \ (A32+ K^^ (O32)

tan (45°— \ 4) cos \ (A13+ A31—(Ojg) ' cos \ (A32+ A23—W32)

tanM45°-iO -- '''?
ft" t>^"tUC.U

V ^ 2 ^ly cos 1 (A12 + A21 —(O12)

, COS 1 (Ai3 + A31 + toi3) ^ COS \ (A23 4- A32 4- 0)23)

cos J (Ai3 + Agi —(Ok) cos 1 (A23 + A32 —(O23)

^ 2 2/ COS I (A 23 + A32 —CO23)

, COS j- (A21 + A12 + (021) ^ COS i (A31 + Ai3 + o>3i)

COS J (A21 + A12 —CO21) ' COS 1 (A31 + Ai3 —W31)
^^^^'

tan- (45° —\U = —cos \ (A31 + A,3 + <03i)

cos J (Agi + A13 —CO31)

^
COS \ (

A32 + A23 + ^032 ) _^ cos \ (A12 + A21 + <02l)

cos J (A32 + A23 —CO32) cos \ (A13 + A21 W21)

These equations are closely approximate to rigorous

accuracy, even when the stations are from 100 to 200 miles

asunder.

6. Let Q, (^, Q^ be any three stations on the earth's

spheroidal surface. Then if K^, K.^, Kg, indicate the angles

between the chords joining the stations which have their

vertices in (^, Q, Q, respectively; and that C^, C.,^ C3,

indicate the corresponding angles of the geodesic triangle

formed by the geodesic arcs connecting the stations; we
have evidently

cos K V

cos C, = —tan a, „ • tan a, A
^ cos a^3 cos a^2 1^ ^^\

cos K,
\ / \

cos C, = = —tan a„ ,
* tan a„ „ / (13 2)2 cos a^ ^ cos ttg

3
21 2 3/ \ /

r^
cos K

cos (J, = —tan a„., ' tan a.
cos a,„ cos a, ,

^-
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If it were possible (and it is usually supposed so in applying
Legendre's and Delambre's processes in the solution of

questions pertaining to the spheroidal triangles of a trigo-

nometrical survey) to find a sphere such that a spherical

triangle described on its surface can have sides equals in

length to the sides of a spheroidal triangle, and chords equal
to the chords of the spheroidal triangle; then, it is obvious
that by putting D^, D.,, D3, for the angles of this spherical

triangle which correspond to the angles Ki, K^, K3, of the

chordal triangle, we should have

—

cos K
cos D^ = 7—.

;

r ^—, —
:

1 COS 1 (a^3 + a3 J • COS ^ (a^3+ a, J
—tani (a^g + a^J -tan J («] 2 + ^21)

cos K„
cos D,

cos D.

cos i («2 1 + «i 2) cos 1 (a,
3 + ttg J

—tani(a3^ + a^J ' ^^n J (a,3 + a^^)

cos K„

)(]33)

COsi (a3
3 + a, 3) C0sl(a3, + a^3)

—tanl(a3^ + a,3) ' tan J (a^^ + a^3)

By comparing the values of the angles D^, D^, D3, of the

imaginary spherical triangle as given in the formulae (133),

with the correct values of the corresponding angles C^, C,,,

C3, of the spheroidal triangle as given in formulae (132), it

is evident that, with due respect to the utmost accuracy

required in practice, we have

—

cos C^ —cos D^ = tan J (a^3+ a^J tan J {a^^-\- a^^)

—tan a^ 3 tan a^
^

cos C, —cosD, = tanl {a,.^+ a^^Jtan 1 {a,^^+ a^^) .

—tan a^ ^ tan a^
3

cos C3 —COSD3 = tan J(a33-f- a^ 3) tan i (a3^ + a^3)

—tan a^^ tan a^^

their logs being the same to at least 8 or 9 places of decimals.

From these it is evident that cases may occur in geodetic

surveying in which one of the angles of the spherical triangle

is greater than the corresponding angle of the spheroidal

triangle, and that another angle of the spherical triangle is

less than its corresponding angle of the spheroidal triangle.
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However the differences are very small indeed. As an

instance we may consider the large spheroidal triangle

of article 7, page 234, of the "Account of the Principal

Triangulation of Great Britain and Ireland." Here we find

that at the station whose latitude is 53°^^ SO', the spheroidal

angle exceeds the corresponding angle of the Legendre sphe-

rical triangle by about y^^ of a second ; and, although such

may . be disregarded in actual practice, it is nevertheless

obvious that the usual method of manipulating the measured

angles of a spheroidal triangle (by means of Legendre's

theorem, so as to have their sum give the desired spherical

excess) is erroneous in principle.

NOTES.

It is easy to perceive that the principal theorems arrived

at apply to any surface whatever as well as to the surface

of the spheroidal earth, even when such surface is so irre-

gular as to be inexpressible by means of an equation.

Wecan assume any straight line cutting the normals to

the surface at the stations S^, S^^, as polar axis of reference

;

and then, assuming any point C^ in this polar axis as centre

of reference, we can take the plane through it perpendicular

to the axis as the equatorial plane of reference. Thus the

figure can be constructed as already indicated in the case in

which the surface is a spheroid; and we have formulae (50),

&c.

When the stations S^, S^^, are so near to each other as to

permit us to regard the normals as making angles with the

chord such that the ratio of their sines can be regarded as

equal to unity, and the traces of the normal-chordal planes

as equals in length and circular measure, we have

—

tan 1 CO = ^-^\4^A ' ^^* i (^^ + ^ Jsm i {I, + I,)

tan . tan il" = - cos i (A/+ A, + a>)

cos i (A, + A,, —(o)

sin A, R,, cos I,

sin A„ R, cos l.

and all the formulae not implicating peculiar properties of
the spheroid. If there be three stations to be simultaneously
considered, the assumable position for the polar axis of
reference is generally restricted, as such axis must cut the
three normals to the surface drawn through the stations.
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If the three normals intersect in one point, any line through
this point can be assumed as polar axis. If two of the

normals cut each other, and that neither of them is cut by
the third, then the polar axis must pass through the point

of intersection and lie in the plane of this point and the

third normal. If the three normals have no point of inter-

section, then the polar axis must lie in the surface of a ruled

quadric, &c.

And when there are four stations, then should no two of

the four normals lie in one plane, there can be but two
transversals drawn to cut them, and therefore but two posi-

tions for the polar axis. However, with respect to all sur-

faces of revolution (whose normals must all cut the axis) we
can arrive at general theorems applying to any stations

wliatever on the surface.

For instance, we can easily demonstrate the following

THEOREM.
If (T), r«"), be any two stations on a surface of revolution

of any kind, and A^ 2, A^ „_i, the angles which the true
" geodesic " joining the stations makes with the traces of the

meridian planes through the stations, and that Ri, R„, are

the normals terminating in the axis, then will

sin Ai 2 _ E,„ cos 4 .

sin A„ „ _ 1 Ri cos li

Conceive the " geodesic " to be divided into infinitesimaUy

small parts or elements, 1, 2; 2, 3; 3, 4;

n —2, n —1 ; n —1, n.

^H-i,n represent the azimuths of

the stations

0, 0. CO-

CO. 0. 0'
A21,

the stations

Let Rj, I\/2' •

mals at stations

0. •
•

as if taken at the stations

n - 1 respectively.

A«, „ _ 1 represent the azimuths of

„ _ 1 as if taken at the stations

n?) respectively.

be the lengths of the nor-

respectively.

Then from the elements of analytic geometry, we know
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that the tangent lines to am^ infinitesimally small arc of

the first order, which forms part of a geodesic, have their

least distance apart an infinitesimally small of the third

order; and that the ratio of the lengths of these tangents,

from the points of contact to their points of least distance

from each other, is that of equality. We know also that

the plane of every two consecutive elements of any
"geodesic" contains the normal at their point of junction;

and .*. that sin Aoj = sin A23 ; sin A32 = sin Ag^;

; moreover, we know that the ratio of the cosines

of all infinitesimally small arcs is unity. Hence we have

—

sin A12 _ E,2 cos ^2

sin Asi
~ Ri cos li

sin A23 _ R3 cos ^3

sin A32 E.2 cos 1.2

=
=

And from these we at once obtain the desired proof, by
equating the product of the first sides of the equations to

the product of their second sides.

However, it may be proper to observe that this method of

proof holds good only when none of the normals R^, Rj, . . .

R„, is either = or = oo ; and that we shall suppose this to

be the case for all geodesies referred to in the present paper.

Wemay evidently write the above relation in the form

—

sin Aj 2
perpendicular from (jO to polar axis

sin A^ „ _ 1 perpendicular from Ci) to polar axis

Or we may express it in words as follows :

—

THEOREM.

On any surface of revolution, the sines of the angles G^,

G^^, which the geodesic connecting two stations S^, S^^, makes
with the meridian traces through these stations are to each

other inversely as the perpendiculars from the stations to

the polar axis.

For a spheroid, such as the earth's reputed surface, we
can prove, in like manner, that for any two stations what-
ever on its surface

—

sin^ A, tan^ I, + |, tan^' ^^ + 1-0068314987
b'

sin^ A„ tan^ 4 + -^ tan'- I,, + 1-0068314987
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in which Aj, A„, are the angles which the true " geodesic
"

joining the stations makes with the meridian traces through
the stations, &c.

^p° The theorem expressed by formula 10, maybe ex-,

pressed as follows :

—

The plane perpendicular to any chord of a quadric, of

revolution through its middle point, bisects the portion of

the axis intercepted by the normals drawn through the

extremities of the chord ; and the straight line joining the

middle of the chord to the point in which the plane cuts the

axis is divided by the equatorial plane of the surface into

portions whose ratio is the same as those into which it

divides either normal terminating in the axis.

. From this we at once perceive that

—

The perpendicular bisecting any chord of a conic bisects

the portions of the axes intercepted by the normals drawn
through the extremities of the chord ; and that the ratio of

the portions of the perpendicular measured from the middle
point of the chord to its intersections with the axes, is the

same as the ratio of the segments of either of the normals
measured from the curve to the axes.

Problem 1.

Given the latitudes l^, l^^, of two stations S^, S^^ (on the

earth's spheroidal surface), and their difference of longitude

(0 j to find the azimuths A^, \/, the circular measure 5 and
lengiih s of the geodesic arc between the stations ; the angles

a , a^^y of depression of the chord, &c.

First Method.

To find the arcs L', U\ and the azimuths A^, A^^, we have —

•

cot -L' = e^' '^' ^'"^
\' 4- (1 —a tan I,

R, cos ^, ^
'

cot L" = e^

cot A, =

cot A„ =

E,, sin I,

E,,^ cos l„
1 \^ J

--.

cotL' cos I. —sin h cos CO

sin (0

cot L' cos i„ —sin i„ cos 0)

or having found the arcs U, Ij\ as above indicated, we can
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find the azimuths and the angles D^, D^^, by means of the

formulae

—

tanHA.+D.)= :-|g;:;;:;
.coti.

- Hi>, + A„) = £2^11;^). cot i.

To find a^, a^^, %z^, z^^, and s, we may proceed as follows:

—

First we find 8„ 8,,, from

^, = JJ —V

h„ =. r —L"

Then from the triangles S ID , S^^ID^^, we have, to find IS

,

ID, IS, ID-
;

tani(is.+iD.)^
:;:;g;+t:i -^-i^-

tani(IS.-ID.)^ -|g;+t:i '^-i^-

tani(IS. + m.)^
;-|[t-

+
g| tani3.

tan i (IS. - ID.) = ^^^f(f-
+ ^-) • tan ^ Kcosi(A. —D.)

Then— a, = 90° —IS,

a, = IS. —90°

^ = «/ + «/;

s, = ID. —IS,

0. = IS. —ID,

s = 0, • K, • sin 1" = 2. • R. • sin 1"

But we can find k and s otherwise, thus

—

7 _ R, cos I, sin (0 R,, cos l„ sin w

sin A. cos a. sin A, cos a,

^^^.^•sinr
2 • sin A ^

Or having found k, in terms of the given data, from

A^ = (R, cos /,)^ +. (R. cos l,^f —2 • R, • R,, cos Z, cos Z. cos <o

+ (1 —ey • (R, sin ^, -- R. sin Z.)^
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we can find the angles of depression a , a^^, by means of

(109), and then find the azimuths from

. R,, cos l„ cos <o
sin A, =

sin A„ =

k • cos a,

R, cos I, cos 0)

k ' cos a,,

When A^ or A^^ is found to be nearly 90°, it cannot

be accurately obtained by means of the usual tables of

logarithms ; so that, in such case, it is necessary to proceed

as indicated in the works on trigonometry. Thus, putting

A for the angle to be found, and N for the value of the

function to which sin A is equated (which is nearly equal to

1), we have

—

sin (45° -J A) = "yA N

^^' tan (45° —
J A) = Y-l

—N
+ N

from which to compute the value of the angle A.

And when, in the sequel, an angle is to be found from an
expression for its sine which is nearly equal to unity ; then,

putting N to represent such expression, we should proceed
to find the angle by these formulae.

OthervAse.

(When the stations are not more than 40 miles asunder.)

From the spherical triangle S^PS^^ we have the formulae

—

tan I (A, + A..) = -°^
I

;;:-;; -cot I

.

sin r sin w sin I" sin cosm V = —
,
— =

:
—

sin A„3 sm A^

Then to find the azimuths we have

—

. R,, sin I"
tan X =

R^ sin r

tan 1 (A, —A,) = tan J (A, + A,,) tan (x —45°)

'

J (A, + AJ = i (A, + A,,)
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To find fi, %and the angle a , we have

—

tan i 2 = tan J v cos Q, ov % = v ' cos O
A = 2 • O • sin J :S, or A = O • :S • sin 1"

To find the length h of the geodesic chord between the

stations

—

7 _ H, sin V sin w _ R,, sin I" sin w

sin A,, cos ^ S sin A^ cos J ^

Then to find s, we have

—

= ^ • ^'^ • sin r^

"A • sin J ]S

And to find the angles a^^, a^, of depression of the chord k

below the tangent planes to the earth at the stations S^^, S^,

we have —
tan 2/ = ^

(a, - a,) = {y —45°) • 2 • sin 1"

(a, + a,) = X

Problem 2.

Given the latitude l^, the azimuth A^, and the length s

and circular measure 2 of the geodesic arc between the

stations ; to find the latitude l^^, the azimuth A^^, the differ-

ence of longitude w, &c.

First Method.

To find the angle <j>„ we have, from the spherical triangle

PS^I—

tanH^. + ^.)=- -|;;;-|^j 'taniA.

tani(^.-/^.)-
:;::ig;;l|

-taniA.

^p" It may be proper to observe that I 2 is used in these

formulas instead of the angle a^ of depression of the chord;
but as the difference of these will in all actual cases be less

than yL of a second, and that the numerators vary as the

denominators when i ^ varies in value, and that any varia-

tion in J 5 which increases or decreases ^ (</>, + P) will

decrease or increase J (<^^ —p) ; .-., as respects the value of



On Practical Geodesy. 43

<^^ = 1
(<^^^ 4- ^ ) -j. 1 ((^^ —^^)j there can be no appreciable

difference whether we use | 2 or ct^.

Find the chord k by means of the usual formula

—

7 _ 2 • 5 • sin i ^
2 • sin 1"

Then, to find the difference of longitude w, and the angle

</>,^ by means of the plane triangle p.C^p^^, we have

—

, , -o 7 7 ^ • sin A, cos i S
tan h, —K, cos I, ; tan h,, = ^ 2

—

sin
<f)^

h {^. + 0,) = 90° - i ^,

tanH<A.--) = ^^{|^J-cotl<^^

Then to find the azimuth A^^ and latitude l^^, we have

—

. sin <4,, . .

sin A,, = ——̂-^ • sm A,
sin <^,

tan hi" =- '''tff^^f^^^i • «ot i V2
cos J (A, + A,, —(u)

2

^p" If instead of l^, A^, we were given l^^, \^, we should
first proceed to find the angle ^^, by means of

—

and then proceed in an analogous manner to find <^,, w, A„
and l^^.

Otherwise (Case 1st).

Given Z^, A^, s ; to find w, Z^^, and A.^^ (see foot-note).

To find z^y D^, (0, and L'', we have

—

s

R, sin 1"

tan I (L" _ = ^!°i(,t'~^"^ • tan J .,
Sin J (A, + D^)

. -r ,, sin V sin A,
sm L" = ^-—-

—

'-
'

sinD,,
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Then to find 8,„ l^^, and A^^, we have

—

8, = (j-^^) ' '^"^ ^" ^'"^ * ^^" + ^') ' (^" - ^')

^^^ = 90° —(L" + S,)

A,, —D/; = sin D,, • tan J 0, • S,,

1^° This case, in which the given latitude l^ is greater

than the sought latitude l^^, is made known to us by the

given azimuth A^ being greater than the computed angle D^^.

And as we must have (see formulae 21) the sought azimuth
A^^ also greater than the angle D^^ it is evident' that by put-

ting ^ to represent the excess, we have

—

shewing that the formulse given in the "Account of the

Principal Triangulation of Great Britain and Ireland " (see

pages 247, 249, 676 of that work) are erroneous in every
case in which the given latitude is greater than the sought
latitude.

(Case '2nd.)

Given ?^^, A^^, s ; to find to, l^, and A^.

To find 0^^, D^, (0, U, we have

—

_ s

K.,, • sm 1"

tan i (D, + ») = "ZlZ.Z'i "»' * ^"
COS ^ (6 + ^//)

or, g.^ ^, ^ sin I" ' sin A,
sin D,

To find B„ l^, and A^, we have

—

S, = (1^2) • sin L'- sin 1 (I" + LO • (I" ~ L')

l^ = 90° —(L' —S,)

r>, —A^ = sin T>, ' tan f ^,,
•

8,
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This case, in which the given or known latitude l^^ is

less than the sought latitude l^, will be intimated to us by
the angles A^^ and T>^ ; we shall have the given azimuth A^^

less than the angle D^. If the angle A^^ = D^, then A. = D^,

and l^ = l^^, &c.

Othei^ivise.

Case 1°. When l^, A^, s, are given ; to find l^^, A^^, w.

Find , w, D^^, as indicated in the last solution, and then
find A^^ by means of

—

. . cos (z, i 2) . -p,
sin A,, = ^^-^— -—̂

—

'- ' sin Jj,.

cos J 2,

And find l^^ from

—

, „ cos A (A, 4- A,. + w) ,

tan 1 r = — wA I A \
• cot 1 Z'2 COS J (A, + A,, —w) 2

;^^ = 90° —I".

Case 2°. When ^^^, A^^, s, are given; to find l^, A^, w.

Find z. w, D, as indicated in the last solution, -and then
find A^ by means of

—

. . cos (z^. ^2) • Tksm A, = ^
, J—̂ • sm D.

And find I. from

—

cos ^ 2

cos A (A, + A,. + (u)

*-4^' = -c-ornA7TAf^--*^^
I, = 90° —r.

Peoblem 3.

Given the latitudes l^, l^^, and the azimuth A^ ; to find the

azimuth A^^, the difference of longitude w, &;c.

By equating the values of sin a, as expressed in formulae

108, 109, we have—
R,, cos I,, (cos^ Z, + 1) ij \ —sin^ w

—(R/ +
"r"

—-^// * ~2
'

sin l^ sin l,^ cos l^

—(R,, cos Z,^ tan l, cot AJ sin w

or, M • n/ 1 —sin^ o> = L —N • sin w

in which the values of M, L, and N are known.
From this we at once obtain

L N + Vm^ (M^ + N2 —Lnsm <o = —

-

^ '
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in which the + sign only should precede the radical portion.

This is evident. For since the general expression for sin o>

holds when A^ = 90°, in which case N = ; and that sin

o) must be positive ; therefore it is the + sign that must in

such case, and in all cases, precede the radical.

Wemay also find w in the following manner

—

Find the arc JJ' by means of formula (79), and the angle

D^^ from

—

. cos Z, sin A^
sm D,, = '

—
YTf
—

" sm JL

'

and tlien to find w we have

—

cos ^ CLi" —Z')

*^° ^ " = cob|(L" + ""^ * <^' + ^">

To find the azimuth A,, we then have

—

tan J (A, + AJ = cos i {I —I)
. ^.^^ i ^

^ ^ ' ^ "^ sin i (I, + I)
'

And to find s, we have

—

sin L'^ sin wsm z, =
sin A,

5 = 2, • E, • sin 1"

The other entities can be easUy found as indicated by
formula.

1^" If l,„ l„ A,, were given instead of l„ l,„ A, ; then
instead of L", D,„ fee, in the preceding formulae, we should

have L', D,, &c.

Otherwise.

To find the azimuth A,,, we have

—

. . R • cos Z, . . ,sm A,, = ^ -' • sm A, nearly.
ii,, • cos l,^

And then to find w, we have —

And when instead of A„ the azimuth A,, is given, the first

of these must be replaced by

A R,, • cos I,, . Asm A, = —^ ^ • sm A,,
K, • cos I,

&c., &c.
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Pkoblevi 4.

Given the two azimuths A,, A,„ and one of the latitudes

l^ ; to iind the latitude l,^, the difference of longitude w of the
stations, &c.

To find the latitude l^^, we have, from (53)

—

, .,
7 (1 —e^) tan^ / sin^ A., —(sin^ A, —sin- A ,,) ,

tan- I.. = ^^ i i—- '1—;-\ i '±! nearly.
(1 —e-^) sm^ A, ^

Then to find the difference of longitude, we have

—

The other entities can now be found, &;c.

Problem 5.

Given the latitude l^, the azimuth A^, and the diflference

of longitude w ; to find the latitude I,,, the azimuth A,,, &c.

Find L'' by means of formula 78.

Then finding 77i, p, q, by means of

—

m = cot^ L" —-, • K^ • sin^ I,

p = cot^ L" —-2 • E'- • sin^ Z, + (1 —e^
a

2 = 2 e^ (1 _ e^) ^^ . sin I,

a

the second of the formulae 79, gives us the equation

—

m—p ' SID? l^^ = q • sin I,, J I —e^ • sin^ l^^

Ajid from this we immediately obtain

—

sij^2 I ^ q' + 2mp + qJq'-\-4:m{p —m^)
2 ip' + q^ e')

Now, if we conceive a case in which I, is of any value we
wish, and that the corresponding value of I,, is such that

7n = 0; then it is evident l,^, p, q, have finite values ; and
we perceive that in such case the + sign only must precede

the radical. And it is .*. evident that the -|- sign must, in

all cases, precede the radical in the above general expression

for sin^ I,,.

Or we may proceed as follows

—

From the triangle S,PD,,, we have to find L", z^, D,,

tan i (L" + z^) = ^o« i
(f .

- ^) . tan i I'
^ ^ ^ '' cos i (A, + i^

2
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tan i (L" - z,) = ^!'^f<f'-'°)
• tan i I'

sm i (A, + w)

. Tx sin Z' • sin A, sin I' • sin w
sm D,, =

,
—̂̂ '- = -.

sm L

'

sin z,

tan i (A, - D„) =
^j^^

*
j^I

~
l\

' <=°H <-

sm ^ (ii + ^

)

Then we can find S,, by 83 or any of the formulae 88, and
the azimuth A,, by means of any of the formulae 94.

Then, Z, = 90° —(L" + 8 J. fee, &c.

When instead of I,, A„ we are given I,,, A,^, the analogous

methods of proceeding are evident.

Pkoblem 6.

Given the azimuth A,, the latitude l,„ and the length s

and circular measure 5 of the arc between the stations ; to

find A,,, l^, o), &c.

To find 0), 0,,, D,, A,,, and I,, we have

—

s * sin ^ • sin A,
sm 0)

cos l^, -sin r

5

sin D,

K,, • sin 1"

cos l„ ' sin w

sm z,

tan 1 A, = s"^ i i^'' —̂') . cot J (D, —to)

tan i Z' = - cos j (K + A, + <o)
. ^ ^.

cos i (A, + A, - a>)

If A,,, I,, were given instead of A,, l,„ the method of solu-

tion is analogous, and requires no particular elucidation.

Pkoblem 7.

Given the latitude l^, the difference of longitude w, and the

length s and circular measure ^ of the arc between the

stations ; to find the azimuths A^, A^^, the latitude l^^, &c.

To find , D,,, A^, A,,, l^,, we have

—

Pv, • sin 1"
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sin V sin w
sin D„ =

sin z,

sin A (r —0.) ,^ .

^^^ * ^' = sin\\v+z) «°* * (D" - -)

K,, • 2 * cos /^ sin 0)

sin A,, = -.—

^

"
5 • sm 2

cos ^ (A, + A,, + <o) , „
'-^ i'" = - cos ! (A, I aI I j • °°^ i

^'

And similarly when ^.^ is given instead of ?,.

Pkoblem 8.

Given the azimuth A^, the diiference of longitude w, and
the length s and circular measure 2 of the arc between the

stations ; to find the latitudes, &;c.

ruttins:

—

G = -• ^77—•—n.° sin w 2, • sin 1

Weeasily find, from 62

—

" V (a + eG) • (a —eG)

And now we can find the other entities as in problems 6

and 7.

Problem 9.

Given the two latitudes l^, l^^, and the length s and circular

measure ^ of the arc between the stations; to find the

azimuths A^, A^^, &c.

To find U, U', 0^, z^^y we have

—

H sin I

R sin I

R, • sin 1"

R,, • sin 1"

Then from the spherical triangles S^PD^^, S^^PD , we have
—putting p = h(l' + z^ + LO, q=i (^ + 0, + L'),—

sin {p —g,) sin {p —V)
tan ^ A, = ; -.—

7

^r^TT

—

^ ' sin p sin y? —W)
H
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^ " Sin q sm (q —L
)

tan^ . „ = ^in (?. - L") Bin (p - O
sm^ sin [p —z/)

'^ Sin 2' sin (g' —z^)

In this method of solution we have not made use of %.

In the following method we shall not make use of s, but of

5; and it is applicable to any two stations on the earth's

spheroidal surface, as weU as to mutually visible stations.

Otherwise,

Find the angles a^^, a^, of depression of the chord by means
of-

tan X = ~
tan J (a,, —a,) = tan (x —45°) • tan J !§

1 (a, + a,) = J :S

To find the azimuths we have the equations

—

cos a^ COS l^ cos A.-f-cos a^^ cos l^^ COSA,^ = sin a, sin ^^4- sin a,^ sin l^,

1 —cos^ A, _ (R,, cos a,, cos l,y

1 —cos^ A^^ (R, .cos a, cos l,y

By putting

M, = cos a, cos I/, M,, = cos a,^ cos I,/, Q= sin a, sin ^, + sin a,, sin l,^

we easily find

—

cosA - Q
•
^\- ^/(Q^R/R.r-(R^-R^.) •

(M^/ R^ -mvr^)
M,/(R^— R^,)

Since cos A^ must be positive when the angle A^ is acute,

.*. it is evident that in all cases it is the + sign which must
precede the radical in the above expression for cos A^. It

is evident that in the expression for cos A^^, it is the —sign

only which should precede the radical.

When l^ = l^^ ; then a^^ —a/, R^ = R^, ; M^ = M^^

;

and the above expressions can be written in the forms

—

cos A = QR. (R.-RJ _
' m; (r; + r^,):(r;- r J
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cos A = Q R. (R. - R.)
" M, (R, + R.) (R, - R.)

.*. cos A, = cos A,, = --^ = tan A 2 tan ^,.

To find the chord k and the angle which it makes with
the polar axis, we have

—

7 _ 2 5 • sin J 2

COS 6 = - —-—• (R, sin I, —R;, sin I,)
k

To find the sides of the plane triangle p^ C^ p^^, we have

—

Co p, = R, COS I,; C p,, = R,, cos I,/, 'p;p„ = ^ • sin ^.

And knowing the three sides of this plane triangle, we can
find its angles <^,, <^,^, w.

Then from the spherical triangles S^PI, S^^PI, we have the

following formulae from which to obtain the azimuths

—

Wecan also find the sides IS^, IS,,, of these spherical tri-

angles ; and then we have

—

A =^, —>\>,

a, = 90° —IS,; a„ = IS, —90°.

And as a test of accuracy of the work we have a, + a,, = X

Example (Problem 1).

Let l^ = 38°; I, = 37°; « = 1°, 15^, 00"; be the given

latitudes and diflference of longitude of the stations.

First then, to find the values of the normals R^, R,^, drawn
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at the stations S^, S^^, which terminate in the polar axis, we
have the well known formula

a a

^' = Jl—e" sin^ i] ^ ^" = Jl —e'^in^X,

and we easily obtain

logR, = 7-3212526296; H, = 20953309-5777 feet

;

logR,, = 7-3212277292; E,, = 20952108-2495 feet.

Wewill now proceed to find the values of the small arcs

S/> ^//. t)y means of formula 80. And as R^ cos V —R,, cos I"

enters in both numerators and denominators of the expres-

sions, we shall first find its value. Thus :

—

log R, = 7-3212526296 log R,, = ^-321227292

cos I' = 1-7893417987 cos I" = 17794630249

7-1105946083 7-1006907541

,., / 12900145 48795
antnogs

j 1260929351225

.-. R, cos V —R, cos I" - 290851-9757

and log (R, cos V —R,, cos I") = 5-4636720181

Now to find 8^ we have formula 80 or

—

e^ (R, cos V —R,^ cos I") sin V
**^ ^' " R^ —e^ (K, cos V —R,, cos I") cos V

log e^ = 3~-8315591974 log e" = 3~8315591974
5-4636720182 54636720182

sin I' = 18965321441 cos l' = 1-7893419787

3-1917633597 30845731943
antilog = 1214-9913

but R, = 20953309-5777
.-. the value of the denominator = 209520945864

and its log is 7*3212274459
3-1917633597

,\ log tan 8, = 5 8705359138

.-. 8, = 0°,, 00', 15"-309501

To find 8,, we have the formula 80 or

—

e^ (R, cos I' —R,, cos l") sin I"

^" " R,, + e" (R, cos I' —R,, cos l") cos I"
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log e" = 3-8315591974: log e' = 3-8315591974
5-4636720182 5-4636720182

sin r = 1-9023486165 cos I" = 1-7794630249

3-1975798321 30746942397

antilog = 1187-6658
= 20952108-2495

value of denominator = 20953295 9153

7-3212523464
3-1975798321

its log = 7-3212523464

.-. log tan 8,, = 5 8763274857

.-. S, = 0°,, 00',, 15''-51503

To find the arcs L' and L", we have

L' = I' + 8, L" = I" —8,

r = 52'^ I" = 53°

S, = 0, 00^, 15^^-30950 8,, = 0, 00', 15^- -51503

•. L' = 52°, 00',, 15"-30950 .-. L" = 52°,, 59',, 44" 48497

These values are correct to the last or fifth decimals.

To find L' we have also the formula 79 or

—

cot L' = (1 —e^) cot I' -\- e^ •

^ ^^ ^,

log (1 _ e") = r-9970432059 log e" = 3-8315591974

cot I' = 1-8928098346 log R„ =. 7-3212277292

1-8898530405 cos I" = 1-7794630249

antilog = 0-7759844892 4 9322499515

logR, = 7.3212526296

sm V = 1-8965321441

7-2177847737

4-9322499515

3-7144651778

antilog = 0-0051816154
0-7759844892

.-. cot L' = 0-7811661046

.-. log cot L' = 1-8927433907

.-. L' = 52°. 00'. 15''-3095
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To find L" we have formula 79 or

—

^ ^ E,, cos I'

cot L" = (1 —e-) cot ^" + e- •

^^ ^^^ ^,,

log(l _e2) = i -9970432059

cot I" = 1-8771144084

T-8741576143 antilog = 0-7484410756

log e' = 3-8315591974 log B., = 7-3212277292

logK, = 7-3212526296 sinT = 1-9023486165

cos I' = 1-7893419787 7-2235763457

4-9421538057
7-2236012457

3-7185525600 antilog = 00052309 125'5

7484410756'5

.-. nat cot L" = 0-7536719882

.-. log cot L" = 1-8771823669, and L" = 52°,, 59', 44" -4867

tlie error of 0"-0018 being due to the insufficiency of the

tables or to their inaccuracy in the 10th decimal places, &lc.

Now, in each of the spherical triangles S,PD,„ S,,PD,,

S,PS,,, we have the two sides and the included angle w from
which we can find the angles at their bases and also the

To find the angles A„ D,„ and base z^ of the triangle

S.PD,—
cot 1 o) =11-9622253888 cot J w =11-9622253888

cos J (L"— I') = 9-9999836052 sm J (L"— I') = 7-9389661700

21-9622089940 19-9011915588
cos 1 (L" + I') = 9-7844684133 sin J (L" + r) = 9-8994541209

tanJ(A, + D,,) = 12-1777405807 tan 1 (A—DJ = 10 0017374379

.-. I (A, + DJ = 89°,, 37',, 10" • 133745

.-. 1 (A, —D„) = 45°,, 06',, 52" • 590185

.-. A, = 134°,, 44',, 02" • 72393

D,, = 44°,, 30',, 17." -54356
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sin V = 9-8965321441 sin L" = 9 9023239980

sin w = 8-3387529285 sin a> = 8-3387529285

18-2352850726 18-2410769265

sin D,, ^ 9 6456993857 sin A, = 9-8514912397

.-. sin 2, = 8-3895856869 .-. sin 2, = 8-3«95856868

.-. z, = V, W, 18" • 8798

To find the angles D,, A,,, and base Zj, of the triangle

A.,PD —
cot 1 CO =11-9622253888 cot J w =11-9622253888

cos 1 {l"—lj') = 9-9999836034 sin J (/"— L') = 7-9389910706

21-9622089922 19-9012164594
cos J (r + L') = 9-7844261226 sin J (r+L') = 9-899479Q213

tan i(D, + AJ= 12-1777828696 tan J (D—AJ=10-0017374381

.-. i (D, + A,) = 89°, 37', 10" • 267152

.-.
I (D, —A,) = 45°, 06', 52" • 590233

.-. B, = 134°, 44', 02" • 857385

A, = 44°, 30', 17" -676919

sin l" = 9-9023486165 sin L' = 9-8965573265
sin o) = 8-3387529285 sin o) = 8-3387529285

18-2411015450 18-2353102550
sin D^ = 9 8514909614 sin A, = 9-8456996715

-.-sins, = 8-3896105836 .-. sins, = 8-3896105835

.-. 2, = 1°, 24', 19" • 169884

To find the angles A„, A„„, and base v of the triano^le

cot 1 to =11-9622253888 cot i w =11-9622253888
cos I {l"~l') = 9-9999834631 sin J {l"—l') = 7-9408418596

21-9622088519 19-9030672484
cos 1 (^" + ^0 = 9-7844471278 sin i {l" + r) = 98994666546

tani(A,+A,,)=12-1777617241t^ni(A,—A,,) = 10-0036005938

.-. 1 (A,+A,J = 89°, 37', 10" • 20043

.-. J (A,—A, J = 45°, 14', 15" • 02727

.-. A, = 134°, 51', 25" • 22770

A,,= 44°, 22', 55" -17316
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sin V = 9-8965321441 sin I" = 9-9023486165

sin (0 = 8 -3387529285 sin w = 83387529285

18-2352850726 18-2411015450

sin A,, = 9-8447496921 sin A, = 9-8505661645

.'. sin V = 8-3905353805 .-. sin v = 8-3905353805

.-. V = 1°,, 24',, 29" • 956648

To find the portions v,„ v„ into which v is divided by the

point 0.

From the spherical triangles S„OE,„ S,OE,, we have

—

sin v„ - sin = sin a,,; sin v, * sin = sin a/,

and from these

—

sin V,, sin a,, R,

sin V, sin a, ^,

and .-. (see formulae 27, 33, 34)

—

log R, = 7-3212526296 tan J v = 2-0895709833

log R,, = 7-3212277292 tan (a;— 45°) = 5-4573930282

.-. tan 03 = 10-0000249004 .-. tan J (i/, —v,) = 7-5469640115

.-. X = 45°,, 00',, 05"-91314 .-. J (v„— v,) = 0°„ 00',, 00" -072776

But i (v„+v,) = 0°„ 42',, 14"-978324

.-. v„ = 0°„ 42',, 15"-051100

V, = 0°,, 42',, 14"-905548

To find the angles 0„ 0,„ which a plane parallel to the

two normals makes with the normal chordal planes

—

O, = A, —A, = 0°„ 07',, 22"-50377

a„ = A„ —A,, = 0°„ 07',, 22"-o0377

.*. we have in actual practice (as has been already demon-
strated) Q, = 12,, ; and we may write O to represent their

common value.

To find the angles a„ a„, of depression of the chord below
the tangent planes at the stations S^, S^^, we have

—

tan a, = tan v, ' cos O tan a,, = tan v„ ' cos O
tan V, = 8-0895585138 tan v„ = 8-0895834524
cos a = 9-9999990005 cos O = 9-9999990005

.-. tana, - 8-0895575143 .-. tana,, = 8-0895824529

.-. a, = 0°„ 42',, 14"-899714 '

.-. a„ - 0°,, 42',, 15"-045266

.-. :S = a, + a„ = 1°„ 24',, 29"-94498
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To find the length of k the chord connecting the stations.

Wehave

—

k = R,, cos I,, sin tt)

sin A, cos a,

cos I, =1-9023486165

sin o) = 2-3387529285

k =
R, cos I, sin 0)

5-5623292745

dn A, = r-8514912398

cos a/ = 1-9999672028

sin A,, cos a,,

logR, = 7-3212526296

cos I, = 1-8965321441

sin (o = 2-3387529285

5-5565377022

sin A, r= 1-8456996715

cos a. = 1-9999671990

1-8456668705

5-7108708317

T-8514584426

log k = 5-7108708319 .. log k --

log k = 5-7108708318

.-. k = 513890-787

To find the length of the geodesic arc s connecting the
stations

—

^ • :S • sin 1"

2 • sin J S
log^ = 5-7108708318

log 5 = 3-7050032463

sin 1" = 6-6855748668

4-1014489449

2-3905671803

log 2 = 0-3010299957

2-0895371846sin J S

2-3095671803

logs = 5-7108817646 s = 513903-723718 feet.

To find the arcs OE,^ OE^,, or y,, y,„ whose sum E,E,^ is

the measure of the angle a . Wehave

—

sin V, sin O sin y„ = sin v,. sia Osin y,

sinv, = 8-0895257164
Sinn = 7-3314915049

siny,,

sinv,, = 8-0895506513
sinO = 7-3314915049

.-. siny, = 5-4210172213 sin y, = 5-4210421562

.-. y^ = 0°,, 00',, 05" • 438039 .-. y, = 0°^^ 00',, 05" • 438352

.-. A = 0°,, 00',, 10'" • 876391

To find the arcs e,, /,, whose sum = 8^. Since the pencil

I (S,S„OP) is harmonic, we have

—

I
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And to find the arcs e^^,
f^^,

whose sum = 8,^ ; we have^

—

tan i (e,. -/„) = Jj^i^^ ; i (e., + /„) = J 8„

From these we easily obtain the values

—

e,^ = 7-75773 /, = 7-75729

e, = 7-65453 / = 7-65497

In the spherical triangle F^PF^,, we know the values of

the sides and included angle w ; and applying the usual for-

mulse we find

—

angle F, = 134°,, 44',, 02" • 79079
angle F„ = 44°,, 30',, 17" • 61004

arc F,F„ = 1°,, 24',, 19" • 02484 = J (2, + 2,,)

.-. F, = J (A, + D,) to within 0"-0001

/. F,, = ^ (A„ + D,,) to within 0"-0002

Wemay also observe that

—

D, —A, = 0"-13345 ; A„ —D„ = 0"-13336

.-. D, —A, = A„ —D., to within 0"-0001

In the "Account of the Principal Triangulation of

Great Britain and Ireland," the following formulae are

given

—

D, —A, = J • 5-7^ • cos^ ^„ sin 2 A„ • 0,,^ • sin 1'

D„ —A„ = J •
:j 2

' cos^ I, sin 2 A, • «/ • sin 1"

In working out these expressions with respect to the

present examples we have

—

log J = r-3979400087 log J = 1-3979400087

log T-^ = 3-8345159915 log j-^—, = 3'-8345159915
1 —6 J. —6

cos^ Z„ = 1-8046972330 eos^ l^ = 1-7930642882

sin 2 A„ = 1-9999812911 sin 2 A, = 1-9997379520

log s„2 = 7-4081585260 log z,^ = 7-4081087226

sin 1" = 6-6855748668 sin 1" = 6-6855748668

.•.log(D,-A,) = 1-1308679171 .*. log(A„-D„) = 1-1189418298

.-. D, —A, = 0"-1352 which is too great by 0"-002

A,, —D„ = 0"-1315 which is too small by 0"-002

We may also observe that in all cases in which the
greater azimuth A^ is less than 90°, the second of the above
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formulae would intimate that D,, is greater than A,,, which
we know to be erroneous. And when A, = 90° it intimates

that D,, = A,,, which is also erroneous.

In order to shew the extent to which a change in

the assumed values of the earth's polar and equatorial radii

can effect the results of geodetic computations, I give the
following columns of results, worked out with 7 place

logs.—
FOR THE LATEST CONSTANTS. FOR CONSTANTSFORMERLYUSED.

f a = 20926348 )

b = 20855233
j {

a = 20923713 )

= 20853810 f1 b

K == 134°, 51',, 25"-225 A. = same as before

Aoo = 44, 22, 55-177 Ko =
j> » »

A, = 134°, 44, 03-683 A, = 134°, 44', 10" •647

K ^ 44, 30, 16-718 A, = 44°, 30, 09 - 754
o = 0, 07, 21-541 O = 0, 07, 14- 577
V = 1, 24, 29-956 V = same as before

2 = \, 24, 29-945 2 =
>j » )>

«/ = 0, 42, 14-900 «/ = 0°,42', 14- 901

O-n = 0, 42, 15-045 «// = 0, 42', 15- 045

A = 0, 00, 10-852 A = 0, 00, 10- 681

s = 513905-8 feet s = 513847-7 feet

The increase in A^ is equal to the decrease in A^^, and the

whole amount Q"'^ of such increase or decrease is owing to

the change in the ratio of a to b, and not to their absolute

magnitudes. This shews that if the assumed value r be not

suitable to the locality of the survey, there must of necessity

be discrepancies between the azimuths as found by direct

observation and computations, in closing work carried on by
means of two series of stations. Wesee also that the values

of s differ by about 58 feet in an arc of 97 miles, owing to

the change in the values of a and b.

Example (Problem 2).

Case 1.

Given the latitude l^ = 38°; the azimuth A, = 134°^, 44^^
02"-72393 ; and the length of the geodesic arc s = 513903
•7237 feet ; to find the difference of longitude (a^ the latitude

l^^ the azimuth A^^, &;c.



60 On Practwal Geodesy.

To find z^ we have (from the " Account of the Principal

Triangulation of Great Britain and Ireland ") the formula

—

log0, = log
( ^ J^ ^,) + 0-0004862 x sin' (aI') ' sinH'

in which (a I') represents any close approximate to the

difference of the given and unknown latitudes, so as to have
the first three or four decimal places in the expression log

(sin^ A r) correct.

In the present example we know that a ^' = 1° nearly,

and .*. to find z —
log (0-0004862) = 4-6868

sin2(A^') = 6-4837

,24'

sim

log R, = 7-3212526296

sin 1" = 6-6855748668

sinW =1-7931 2-0068274964

logs = 5-7108817646

antilog = 919-6 3-7040542682
919-6

.-. ^. = r.

Were we to use the more

.'Aogz, = 3-7040543601

',, 18"-8798

.pie formulae

—

s

we evidently have

—

^r sinl"

log;^, = 3-7040542682

.-. z, = 5058"-8785 = 1°,, 24',, 18"-8785,

which is too small by about 0"-001 only. And since the

O'^'OOI part of one second represents not more than an error

of tV of a foot in the whole length of the arc s = 97 miles

;

.'. it is evident that in all cases we can safely find z^ by
means of this formula.

Now knowing A^, r, z^, in the spherical triangle S^PD^^,

we can find the angles w, D^^, and the side L" by the usual

forms

—
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cot i A, = 9-6200681684 cot J A, = 96200681684
cos I (Z'—0 J ==9^9562174764 sin ^ (/'— 2J-9;6307496490

19-5762856448 192508178174
cos J (l' + 0,) = 9-9510220423 sin | (Z' + z,) = 96525942988

.-.tan J (D,, + (o) = 9-6252636025 .-. tan J (D,,—a)) = 9-5982235186

J (D,, + to) = 22°, 52',, 38"-7711

.-. 1 (D,, —w) = 2r, 37', 38" -7719

.-. D,, = 44°, 30', 17"-5430

0) = 1°, 14', 59"-9992

1^" This case, in which the given latitude is greater than
the sought latitude, is made known to us by A^ being
greater than the angle D^^.

To find L"—
sin z, = 8-3895856868 sin l' = 9-8965321441

sin A, = 9-8514912398 sin A, = 9-8514912398

18-2410769266 19-7480233839
sin (0 = 8-3387529285 sin D, = 9-8456993857

.-. sin L" = 9-9023239981 .-. sin L" = 9-9023239982

•/ L" = 52°, 59'-, 44"-4850

or to find L" we may use the formula

—

tan |(L" - = $J#-^^| • tan 1 .,
Sin J (A, + D,) ^

To find 8, we have the approximate formula 84

—

8, = —̂ • sin L" sin J (L" + I') • (L" —I')

or the more closely approximate formula 83

—

. g ^ 2 • e^ • sin 1 (L"-\-l') sin 1 (L" —l') sin L"
^^

" ~
{I —e'') —2' e'-smi (L" + Z') sin i (L" —Z') cos L"

log 1—^2 = 3-8345160

sin L" = 1-9023240

sini(L" + I') =1-8994540
log (L" —I') = 3-5544268

... log 8,, = 1-1907208

8^, = 0°.00'. 15"-5139
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log 2 == 0-3010300

log e^ = 3-8315592

sin I (L" + V) = 1-8994540

sin ^ (L" —r) = 3-9389661

5-9710093 . . . . . 5-9710093

cosL" = 1-7795064 sinL" = 1-9023240

5-7505157 5-8733333

antilog = 0000056300 1-9970186

l^^ = 0-993214854 .-.• sin 8, = 5-8763147

0-993158554 .-. S, = 0°, 00', 15"-5146

its log = 1-9970186

Then to find V, and l^^, we have

—

I" = L" + 8,; I, = 90° —I"

.\ By first value of h„ we find I,, = 37°,, 00',, 00"-0019

„ second „ „ , ^,, = 37°,, 00',, 00"-0004

To find A^^, we have

—

A„ —D„ = sin D„ tan J z, ' 8„

sin D„ = I-8456994 .*. A,,— D„ = 0°„ 00',, 00"-13336

tan 1 0^ = 2-0886210 but D,,=: 44°„ 30',, 17"-5430

log 8„ = 1-1 907207 ... A„ = 44°,, 30',, 17"-6764

/. log(A,,— DJ = r-1250411

l^° In the "Account of the Principal Triangulation of

Great Britain and Ireland" (see pages 247, 249, 676, of that

work) there is given what is considered the most accurate

method of solving this problem. The values of z^, <d, D^^, are

there found as in the present paper, but the azimuth A^^ and
latitude l^^ are determined otherwise : thus

—

To find A^, the erroneous formula 96 is used, which gives

^ = A^, —D^, = 0''-1315 instead of 0^'-1334.

Then to find l^^ the following formula is given

—

] —I = ^
.

sin \ (A, —A„ + ^)

" p' sin 1" sin i (A, + A„ + Q
. j 1 4- ^' . cos^ i (A, —A,,) sin2 1 l

in which p is the radius of curvature for the meridian for
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the mean between the known and unknown latitudes, and
in which

—

1 (A, - A, + = i (A, - D,)

i (A, + A,, + = i (A, + DJ.

The value of l^ —l^^ as computed from the above is

—

I, —I,, = 3600"-0057 = 1°, 00',, 00" -0057

.-. l, = 36°,, 59',, 59"-9943,

which is nearly 0'''*006 in error, when by the method fol-

lowed in this paper the error amounts only to about 0'''0004.

It may perhaps be proper to observe that in the example
under consideration we have in reahty

—

i (A, + A,, - = 4 (A, + D„)

so that the fact of the expression for l^ —l^^, being written

as above shews that its author considered A^^ to be less than
D^^: however, we know that A^^ must be greater than D^^.

Example (Problem 2).

Case 2.

Given the latitude l^^ = 37°; the azimuth A^^ = 44°^ SO'^

17''-67692
; and the length of the geodesic arc s=r 5139037237

feet : to find w, l^, and A^, &;c.

To find the arc z^^^ we have-

log 3„ = log :^-4— J + 0-0004862 X sin^ (aI") sin^ l"
E,„ sm 1 ^ ^

in which a T is the nearest approximate which we can easily
find to the difierence of the known and unknown latitudes.
In the present case we know that a T is nearly 1°.

log (0-0004862) = 4-6868 log R„ = 7-3212277292

logsin=^(A^") = 6-4837 sin 1" = 6-6855748668

sin^^" = 1-8047 2-0068025960

2-9752 logs = 5-7108817646
antilog = 944*5

3-7040791686
944

.•
• log z,, = 3-7040792630

.-. ^„ = 5059"-16988 == 1°. 24'
,,

19'''-16988
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Were we to use the simpler formula

—

then, obviously, we have

—

log z, = 3-7040792, and .-. z, = 1°, 24', 19"-1687

which is C'-OOll too small.

To find D^ and w, we have

—

tan i (D, + cu) = ^»«|(^;;--0 . eot i A,.
' cos J {I" + z,)

tan i P, - o,) = '^ijSI^^j • cot i A,

cot J A,, = 10-3881059553

cos i (^" —z,) = 9-9544060605

20-3425120158
cos J (r + 2 J 9-9490947477

.-. tan J (D, + (o) = 10-3934172681

cot J A,, = 10-3881059553
sin i (Z" —z,) = 9-6386781718

20-0267841271

sin J (r + 2,,) = 9-6600485181

.-. tan J (D, —to) = 10-3667356090

.-. 1 (D, + co) = 67°, 59', 3r"4286

... J (D, —o) = 66°, 44',, 31"-4287

.-. D, = 134°, 44', 02'-8573

to = 1°, 15', 00"-0001

This case in which the given latitude is less than the

sought latitude, is made known to us by the given azimuth
A,, being less than the computed angle D,.

To find U,—
sin s, = 8-3896105836 sin I" = 99023486165

sin A, = 9-8456996715 sin A, = 9-8456996715

18-2353102551 19-7480482880
sin to = 8-3387529285 sin D, = 9-8514909614

sinL'= 9-8965573266 .-. sin L' = 9-8965573266

.-. L' = 52°, 00'. 15"-3097
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To find L' we can also use the formula

—

tan A (l" —L') = ^"^
1 /W T x \

' tan h z„
2 ^ >' sin 1 (D, + A,) 2 '>

To find 8,, we have

—

log j-^ = 3-83451

sin L' = 1-89655 .-. 8, = 0°
,,

00', 15"-3098

sin i (^ + L') = r-89946 .-. l'=L' —8, = 51°, 59',59"-9999

log {I" —L') = 3-55445

.-. log 8. = 1-18497 .-. L = 38°.. 00'.. 00" 0001

To find A^, we have-

sin T), tan ^ z,

sin D, = 1-85149

tan ^z, = 2-08865 .\ D, —A, = 0°, 00', 00"-1334

log 8, = 1-18497 But D, = 134, 44, 02 -8573

... log(D,— A,) = 1-12511 .-. A, = 134°, 44', 02"-7239

l^° In the "Account of the Principal Triangulation of

Great Britain and Ireland " the formula from which to find

Z^is—
s sin I (D, —A ,)

^^~^" - p- sin 1" '

sin 1 (D, + A,)

• |l +'^-cos2i(A,-A,)sinM"|

and the resulting value of I, —I, = l\^ 00', 00" -0059

.-. l^ = 38°, 00', 00"-0059 which
is too great by 0''"006, while by the method in this paper the

error is only O^'-OOOl.

In the treatise on " Geodesy " in Spon's Dictionary of

Engineering, the unknown latitudes in the first and second

cases of the problem are determined by means of the

formulae

—

r 5 • cos A, s^ - sin^ A, tan I,} ,^ , ., ,

,

' " ( R, sm 1" ' 2 • K", • sm 1" j
^ '''

f ,

sjcosA, g' • sin ^ A, tan Z,
]
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from which we find I, —l^^ = 3600 091

and I, —l^^ = 3600-632
;

giving an error of

0"'\ in the first case, and an error of 0'''6 in the second case.

In Chambers' " Practical Mathematics " the formulae diflfer

from the above in having the factors (1 -|- e^ * cos l^,

(1 + e^ • cos'^ ZJ, replaced by (1 + 2 € ' cos^ ZJ and
(1 + 2 € • cos^ I) which are greater ; and .'. obviously the

results must be the more erroneous.

Their method of finding the diflference of longitude is by
means of the formula

s ' sin A, s • sin A,

sin r' • cos l^^ R^^ • sin V • cos I,

sin A, sin A„
' cos l,^ " cos I,

from which we obtain the values

0) = 4499"-838 = 4500"-355

having a difference = 0"'5VJ.


